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Abstract 

From the Stone Age to the Iron Age, the materials we use have always defined our civilization. Today, 

we call our civilization the Silicon Age due to our large consumption of silicon in electrical 

components. Materials Science is therefore an incredibly important research field with a major role 

in the development of our civilization.  

   For millenaries, the way we have designed new materials has been through the trial-and-error 

approach. However, with the high demands of modern society, we need to develop new and functional 

materials faster than ever. Therefore, we must understand the properties governed by materials and 

how to synthesize materials with specific properties. We call this synthesis by design.  

   For the last century, we have been able to characterize the structure of crystalline materials using 

crystallography but to do synthesis by design, we must also understand how materials form. Often, 

the formation of materials goes through a chemical phase where nanoclusters are present in solution. 

The structure of nanoclusters in solution cannot be characterized with conventional crystallographic 

methods and hence, this part of the material formation is poorly understood. In the last decades, it has 

been shown that total scattering with Pair Distribution Function (PDF) can be used to describe the 

atomic arrangements of nanoclusters in solution and Small-Angle X-ray Scattering (SAXS) can be 

used to describe the shape and size distribution of the nanoclusters. However, modelling of PDF and 

SAXS have been restricted to expert users and rarely a combination of PDF and SAXS has been used. 

In this Master Thesis, we push the boundaries of PDF and SAXS analysis. It is demonstrated how we 

can combine the information from PDF and SAXS to get a better understanding of nanoclusters in 

solution. Specifically, we focus on the formation of the [Bi38O45] cluster by dissolving crystalline 

[Bi6O5(OH)3(NO3)5]·3H2O in dimethylsulfoxid. Furthermore, we show that automated modelling of 

PDF and SAXS data can provide new insight compared to conventional modelling techniques, and 

potentially automated modelling can make PDF and SAXS analysis accessible for non-expert users.  
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1   Introduction 

Atomically precise nanoclusters have in recent years been massively investigated since the ability to 

synthetically control the nanocluster sizes1, 2 3 4-7 brings along the ability to reach a range of 

applications with tuned properties.8-12 13, 14 15, 16 4, 16 3 Thereby atomically precise nanoclusters serve as 

an excellent model system for growth mechanisms and many of the nanoclusters can undergo 

nucleation to form materials.3, 17 Developing new materials have in the past millenaries been done 

using the trial-and-error approach. However, if we want to follow the high demand of superior 

materials by modern society, we must be able to construct materials with specific properties by 

design. Developing new and functional materials by design is dependent on a thorough understanding 

of the growth mechanism or nucleation reaction. Despite that, the challenge of understanding growth 

mechanisms and nucleation reactions at an atomic scale is still an open problem in inorganic- and 

materials chemistry.18 Total Scattering (TS) with Pair Distribution Function (PDF) analysis is now 

widely used as a method for characterizing materials without long-range order, such as 

nanomaterials,19, 20 disordered materials21, 22 or amorphous materials,23 where conventional 

crystallographic approaches fail.24-26 For small, non-periodic objects, e.g., nanoclusters, structure 

modelling in either reciprocal (Q) or real (r) space can be done by employing the Debye-equation for 

calculation of scattering intensities, where the position of each atom in the structure is taken into 

account: 

Equation 1.1 𝐼(𝑄) =&&𝑓!(𝑄) ∙ 𝑓"(𝑄) ∙
sin	(𝑄 ∙ 𝑟!")
𝑄 ∙ 𝑟!"

#

"$%

#

!$%

 
 

Here, rij is the distance between atom i and j, and f is the atomic scattering factor. The Debye Equation 

can be applied for both small-angle and wide-angle scattering data (SAXS/WAXS), and a Debye 

analysis can be done either in reciprocal-space, or real-space by PDF modelling after Fourier 

transformation of calculated scattering intensities.27, 28 While the use of the Debye scattering equation 

is computationally expensive, it can be used to calculate the scattering pattern of any structure. In 

recent years, the Debye scattering equation has been applied in PDF analysis of e.g. local structural 

motifs in amorphous materials,22, 29 metallic nanoclusters,28, 30, 31 understanding nucleation processes 

from ionic metal oxido nanoclusters in solution32 and growth mechanisms of ionic metal oxido 

nanoclusters in solution.33, 34 In these studies, a scattering pattern or PDF from a model structure is 

calculated using the Debye equation, and variables such as atomic positions and atomic displacement 

parameters (ADPs) may be refined, until a good fit with the data is obtained. We will demonstrate 
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how this approach can be used to follow the cluster growth from [Bi6O8] to [Bi38O45] using in situ 

PDF and SAXS analysis of data measured on crystalline [Bi6O5(OH)3(NO3)5]·3H2O dissolved in 

dimethylsulfoxid. This is a cumbersome process that often is restricted to experts in the field.  

   Fortunately, automated methods such as structure-mining and cluster-mining have recently 

appeared to overcome this challenge.30, 35, 36 In a recent study of amorphous molybdenum oxide 

materials, Christiansen et al. introduced a new approach, where they automatically generated a large 

number of MoOx clusters to fit experimental data to identify dominating structural motifs in the 

sample.22 I will refer to this approach as the automated motif extractor. They hypothesized that the 

structural motifs present in amorphous molybdenum oxides can also be found in well-known 

crystalline structures, and they therefore used crystal structures of molybdenum oxides as starting 

models, from which they could cut out thousands of different cluster structure models of different 

sizes, which were all tested against their data. However, both the structure-mining, cluster-mining 

and the automated motif extractor approach require extensive computational power since they are 

based on fits of the data, using minimization methods as least-squares algorithm, to a large number 

of structural models. Ideally, we want automated structure characterization in seconds such that the 

results can be used directly to effectively adjust the experiments while performing them. Lately, 

Machine Learning (ML) has both been used to model PDF data by predicting the space group of a 

structure from the PDF37 and to predict the atomic coordinates of a mono-metallic cluster.36 ML is 

significantly faster than minimization techniques and often the prediction is instant. 

   Here, we introduce two new approaches of automated modelling, which are both based on ML. The 

first approach uses simulated data of polyoxometalate (POM) clusters to train a ML model to classify 

which POM structure a PDF is from.  The other approach is a further development of the automated 

motif extractor. We use machine learning (ML) to evaluate the results from automated motif extractor 

to identify important structural motifs. Machine Learning based Motif Extractor (ML-MotEx) 

extracts hundreds or thousands of structural models from chosen starting structure, and then fit these 

individual models to a dataset. The structures and the goodness-of-fit parameter, Rwp value, from each 

fit are handed to an ML algorithm which learns how to predict Rwp values based on a structure (A 

description of the Rwp value is given in Appendix III). The ML algorithm is subsequently analysed 

with the use of SHAP (SHapley Additive exPlanations) values,38 which provide a measure of how 

important each structural feature is to the prediction of the goodness-of-fit value. The ML-MotEx 

algorithm outputs quantified values of how important each atom in a model is for the structure to 

yield a low Rwp value in the given fitting algorithm. Both ML procedures presented in this Master 

Thesis are done completely automated, in semi-real experimental time and without human bias. It is 

thereby a step towards high-throughput real-time automated analysis of PDF analysis. 
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2  Using Scattering to Characterise the 
Nanocluster Structure: A ‘Complex’ Problem 

2.1  Introduction 

As stated in Chapter 1, it is important to resolve the structure of nanoclusters at an atomic level to 

understand cluster growth and nucleation processes with the overall goal of doing synthesis of new 

and functional materials by design. The Debye equation has recently been used with PDF and SAXS 

analysis in both reciprocal-space and real-space to elucidate the structure of nanoclusters in 

solution.28, 30, 32  This Chapter introduces the scattering theory behind the Debye Equation. The 

strengths and weaknesses are discussed of presenting Debye scattering data in either reciprocal- or 

real-space. It is illustrated that some structures are too complex to be characterized by a single 

technique alone but by applying data from multiple techniques, the structure can be characterized.  

 

2.2  Scattering from an Electron to a Material 

Scattering from an Electron 

Scattering is a well-known phenomenon that is happening all around us. For example, light scattering 

is accountable for the color of the blue sky due to the scattering of sunlight from the water droplets 

and it is accountable for the white color of milk due to scattering of light from colloidals in 

suspension. For materials chemists, scattering has been an exceptionally important tool to characterise 

the structure of materials. However, materials chemists do not only use light scattering to characterize 

the structure of materials. Material chemists utilize a range of scattering phenomena as light, electron, 

neutron and X-ray scattering. In this section, we will focus on X-ray scattering, however, the 

principles of X-ray scattering are very similar to those of electron and neutron scattering. 

   From X-ray scattering with in-house equipment to synchrotrons, all build on the interaction between 

X-ray and the electron cloud. We will start by considering the scattering of X-rays from a single 

electron as illustrated in Figure 2.1. The oscillating electromagnetic wave, X-ray, induces an 

oscillation of the electron, hence an acceleration. From fundamental electromagnetic theory, it is 

known that accelerated charged particles emit electromagnetic waves. Therefore, the electron will 

emit X-rays. The outgoing X-ray wave of the electron will have a spherical propagation with a phase 

shift of π to the incoming X-ray wave.39-41 
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Figure 2.1: The incoming wave, ki, is scattered from the electron as outgoing wave kf. The change in 

wavevectors, kf – ki, is referred to as the scattering vector, Q. 

 

As seen in Figure 2.1 the scattering process can be described by the scattering vector, Q, which is the 

difference of the incident X-ray beam ki and the scattered X-ray beam, kf. During a scattering event, 

two types of scattering occur: elastic and inelastic scattering. The illustrated process, where the size 

of ki and kf is the same, is only valid for elastic coherent scattering i.e., where the energy of the X-

ray beam is unchanged, and the phase shift is constant during the scattering event (π for free 

electrons). This process is referred to as Thomson scattering. Compton scattering is another common 

process that happens during a scattering event. This is incoherent and inelastic.39 In this work, we 

will focus on the Thomson scattering, which contains the structural information of the materials, 

while the Compton scattering can be seen as a diffuse background in the data. For Thomson scattering, 

the magnitude of the wavevectors, ki and kf, is given by &'
(

. From geometrical considerations (Figure 

2.1), the scattering vector, Q, can be derived. 

Equation 2.1 Q = 2𝑘𝑠𝑖𝑛(𝜃) =
4π
𝜆 sin(𝜃) , 𝑘 =

2π
𝜆   

 

Scattering from an Atom 

So far, we have only considered the scattering event from a single electron, which is considered as 

scattering from a point. However, most atoms consist of numerous electrons. When we consider 

scattering from multiple electrons in the same atom, we must include the effect of constructive or 

destructive interference. The interference effects will be dependent on the morphology of the electron 
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cloud and the wavelength. Consequently, the scattering amplitude will be Q-dependent and is defined 

as the atomic form factor, f(Q). Effectively the atomic form factor is a Fourier transform of all 

electron positions, r, in the electron cloud, 𝜌.42, 43  

Equation 2.2 𝑓(𝑸) = ;𝜌(𝒓) ∙ 𝑒!𝑸∙𝒓𝑑𝑟  

From this equation, we can derive that when the scattering vector goes towards 0 Å,%, 𝑸 → 0	Å,%, 

then the atomic form factor goes toward the number of electrons in that atom, 𝑓(𝑸 = 0	Å,%) → 𝑍. 

For X-rays, the atomic form factor rapidly decreases with increasing scattering vector, Q, due to the 

spatial extension of the electron cloud. This is also the case for electron scattering since electrons also 

scatter from the electron cloud. However, this is not the case for neutrons that scatter from the nuclei 

since the nuclei can practically be seen as a point in space without extension. Consequently, the 

neutron form factor is a Fourier transform of a point scatterer (the nuclei) which results in a constant. 

 

Scattering from a Material 

We will now extend the theory of scattering from a single atom to real materials which consist of 

multiple atoms. In order to do so, we sum the scattering contribution of each atom, j, in the material 

with position, r. The scattering amplitude, 𝜓, is thereby the sum of the Fourier transform of all atomic 

form factors in the material. 

Equation 2.3 𝜓(𝑸) =&𝑓!(𝑸) ∙ 𝑒"#𝑸∙𝒓𝒋'
(

!)*

 
 

By measuring the scattering amplitude, it is possible to extract the atomic position of each atom in 

the material. In practice, it is not the amplitude that is measured during a scattering experiment but 

the scattering intensity, I. However, the scattering intensity is proportional to the magnitude of the 

squared scattering amplitude.43 

Equation 2.4 
𝐼(𝑸) ∝ |𝜓(𝑸)|+   

In 1915, Debye derived that for materials where the scattering electrons are isotopically distributed 

in the material, as electrons normally are in a material, the intensity distribution can be written as:27, 

44 
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Equation 2.5 𝐼(𝑸) =&𝑓!(𝑄) ∙ 𝑓"(𝑄) ∙
sin	(𝑄 ∙ 𝒓!")
𝑄 ∙ 𝒓!"

#

!,"

 
  

By examining the intensity of the scattered X-rays from a material dependent on Q, we can thereby 

retrieve information about the structure of the given material. 

 

2.3 The two-headed scattering data representation: reciprocal- and real-space 

Traditionally, the mathematical expressions of scattering intensity of a material are expressed in Q-

space as seen in the sections above. A simplified explanation for this is that the interaction between 

the material and the scattered wave happens in the scattering vector space i.e. Q-space. This is why 

data from a scattering measurement is measured in Q-space (or 2𝜃). Conventional diffraction 

experiments as Single Crystal Diffraction (SCD) or Powder Diffraction (PD) are both measured and 

modelled in Q-space. However, it is also possible to present scattering data in r-space using a Fourier 

transformation. Fourier transformations are usually used to convert the variable of a dataset between 

time and frequency or as seen in the previous section it can be used to convert the electron cloud 

distribution into an atomic form factor. A Fourier transform is thereby a mathematical tool to ‘change 

the space’ of a dataset. Figure 2.2 illustrates simulated scattering data of a [Bi38O45] cluster in Q-

space and the ideal Fourier transformation of the data from 𝑄 = 0	Å,% to 𝑄	 = ∞	Å,%. Simulation 

details are given in Appendix I. 

 

Figure 2.2: Simulated TS data of the [Bi38O45] cluster in Q-space is Fourier transformed to real-space data, the 

PDF. 

 

While the data in the two figures contain the same information, the representation of the information 

has been changed. Diffraction peaks in the scattering pattern in Q-space, also referred to as Bragg 

peaks, originate from a periodic order of the atoms in the material. Since the scattering pattern in 

Figure 2.2 does not contain Bragg peaks but only broad features, we can conclude that there is no 
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periodic order of the atoms in the [Bi38O45] cluster. The Q-space and r-space are inverse, which means 

that intensity in the low Q-regime corresponds to larger distances in real space. The large scattering 

intensity in the small-angle regime thereby tells us that the material consists of large units. This could 

for example be from the scattering of the nanoclusters. 

   In r-space it is easier to extract information about the local order of the material. For example, one 

can easily identify peaks at r = 3.8 Å, 6.6 Å, 8.7 Å and 10.2 Å in Figure 2.2, which corresponds to 

frequent distances in the material. Based on the intensity, G(r), of these peaks, one can also index the 

scattering atom because bismuth scatters significantly more than oxygen. The scattering peaks with 

high intensity is from frequent Bi···Bi distances in the structure, while the smaller peaks are from 

Bi···O distances in the material. Furthermore, one can determine the size of the material by simply 

identifying the peak with the highest r-value, as seen about r = 12.2 Å in Figure 2.2. Q-space and r-

space are thereby complementary data representations that highlight different information about the 

structure of a material.  

 

2.4 Using Total Scattering with Pair Distribution Function Analysis to reveal the 
information underneath the Bragg peaks 

As demonstrated in the previous section, it is a powerful tool to analyse both the scattering data in Q-

space and r-space since they highlight complementary information. However, in reality, obtaining 

useful r-space data from a scattering pattern in Q-space is a challenging process. Figure 2.3 shows an 

example of Q-space scattering data of the [Bi38O45] cluster and the Fourier transformed r-space data. 

Details about the experiment and how it has been transformed to r-space are given in Appendix I.  

 

Figure 2.3: Experimental TS data of the [Bi38O45] cluster in Q-space is Fourier transformed to real-space data, 

the PDF. 
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The experimental Q-space data of the [Bi38O45] cluster is very similar to the simulated data, but it has 

a background signal originating from incoherent scattering. However, the structural information is in 

the coherent scattering. We introduce the Total Scattering Structure Function, S(Q), which only uses 

the coherent scattering:42 

Equation 2.6 𝑆(𝑸) =
𝐼./0(𝑸) + 〈𝑓(𝑸)〉& − 〈𝑓(𝑸)&〉

𝑁〈𝑓(𝑸)〉&  
  

S(Q) normalizes the coherent elastic scattering intensity, 𝐼./0, with the average scattering power, 

〈𝑓(𝑸)〉. For X-ray scattering data this results in an amplified signal in high Q which contains the local 

structural information. The scattering intensity in the high Q regime is low due to the Q-dependency 

of the atomic scattering factors. The 〈𝑓(𝑸)〉& − 〈𝑓(𝑸)&〉 term arises from an imperfect cancellation 

in destructive and positive interference between scattering by different elements.42  

The next mathematical treatment of the data is by calculating the Reduced Total Scattering Function, 

F(Q), where the high Q regime is further enhanced:42 

Equation 2.7  𝐹(𝑸) = 𝑄(𝑆(𝑸) − 1)  

F(Q) is the function we Fourier transform in order to obtain the Reduced Atomic Pair Distribution 

Function, G(r), or also referred to as the PDF:42 

Equation 2.8 𝐺(𝒓) =
2
𝜋; 𝐹(𝑸) sin(𝑸 ∙ 𝒓) 𝑑𝑄

1

2
 

 

However, here we encounter another issue as a real experiment does not contain data from 𝑄 = 0	Å,% 

to 𝑄	 = ∞	Å,%. In reality, we therefore use a PDF including artefacts from a limited Qrange of our 

experiments:42 

Equation 2.9 𝐺(𝒓) =
2
𝜋; 𝐹(𝑸) sin(𝑸 ∙ 𝒓) 𝑑𝑸

3!"#

3!$%

 
 

The artefacts seen from the limit of Qmin are illustrated with a dotted line (baseline) in Figure 2.3. The 

data in the low Q-regime contains information about the size and shape of the particles, which 

therefore affects the baseline of the PDF. The limiting Qrange (Qmin > 0 Å,% and Qmax < ∞	Å,%) results 

in ‘termination ripples’ also illustrated in Figure 2.3. In order to decrease the effect of these artefacts, 

we perform TS experiments where the measured Qrange is as large as possible. In order to achieve a 

large Qrange, we often use the rapid-acquisition PDF (RA–PDF)45 setup where a 2D detector is moved 

as close to the sample as possible. Using RA–PDF together with a low wavelength, Equation 2.1, 

makes it possible to obtain high Q-values often up to 20 – 30 Å-1. This could in principle also have 

been done with the use of a point detector, however, an advantage of using a 2D detector is the 

achievement of higher intensity which makes it possible to do measurements with second resolution. 
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We have now shown that it is a challenging process to obtain useful data in r-space. However, with 

TS experiments, we can overcome this challenge with minor artefacts in the data. The data in r-space 

is a great tool to highlight complementary features to the Q-space data, especially the structural 

information of the local order.  

 

2.5 When the Problem is too ‘Complex’ to a Single Scattering Technique 

While TS data is an extremely powerful technique to characterize the structure of most materials, the 

information in a TS experiment is not always sufficient to characterize the structure. Sometimes, we 

simply need data from multiple experiments to determine the atomic structure. Figure 2.4 

demonstrates such an example. The figure compares total X-ray scattering plotted in Q-space, X-ray 

PDF and SAXS data of the [Bi18O36] and the [Bi22O38] cluster, Figure 2.4D–E. The simulation details 

are given in Appendix I. The two clusters have no long-range order, and they have a very similar 

local structure built up by [Bi6O8] octahedra, why it is difficult to distinguish them in both the total 

X-ray scattering data plotted in Q-space and the X-ray PDF data, Figure 2.4A–B. The most prominent 

difference of the scattering from the two clusters in Figure 2.4A–B is the scattering about Q = 0.45 

Å-1, which is also the part of the signal which gives rise to the SAXS pattern illustrated in Figure 

2.4C. However, due to instrumental limitations, the SAXS pattern is rarely measured during a TS 
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experiment and in practice these two measurements are done separately. The two clusters have 

distinct shapes, which makes them easily distinguishable in the SAXS data, Figure 2.4C.  

 

 

Figure 2.4: A) Comparison of the simulated total X-ray scattering, X-ray PDF and SAXS data of B) the [Bi18O36] 

cluster and C) the [Bi22O38] cluster.5, 46  

 

Nonetheless, the SAXS data does not describe the local order of the structure, which can be modelled 

with PDF data. A combination of PDF and SAXS data is therefore ideal to fully describe both the 

atomic structure and the morphology of the clusters. Even when combining the X-ray PDF and SAXS, 

it can be difficult to describe the atomic positions and vibrations of the oxygen atoms since oxygen 

(𝑓4
5,678N𝑄 = 0	Å,%O = 8) scatters significantly less than bismuth (𝑓9!

5,678N𝑄 = 0	Å,%O = 83). 

Therefore, one needs to do neutron scattering experiments to get a better description of the oxygen 

atoms where the bound coherent scattering length is much more similar for oxygen and bismuth 

(𝑓4
#:;<6/=N𝑄 = 0	Å,%O = 5.803	fm) and (𝑓9!

#:;<6/=N𝑄 = 0	Å,%O = 8.532	fm).41 For a 

comprehensive description of the atomic structure of these clusters, one would thereby need both TS 

data with PDF and SAXS from both X-rays and neutrons. 
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3 Conventional Modelling of Scattering Data 

We have now demonstrated that Total Scattering (TS) with Pair Distribution Function (PDF) analysis 

and Small-Angle X-ray Scattering (SAXS) can be powerful tools to describe the structure of a 

material. However, finding the right atomic structure is a cumbersome process, which often requires 

expert knowledge. Ideally, we want automated structure characterization of PDF and SAXS data, 

while doing the measurements, to effectively screen the nanocluster structure during cluster growth 

or nucleation reactions. 

   The conventional process to find the right model is to first search the literature of what the expected 

outcome of the synthesis is. Afterwards, the structural model must be found in a database as the 

Inorganic Crystal Structure Database (ICSD) or the Crystallography Open Database (COD) and in 

the end one must fit the model to the dataset. Sometimes this process is straightforward and can be 

done in hours. Often, this is not the case. As a scientist, we often pursue to synthesize a material, 

which cannot be found in the database. In that case, one must create the model. Another issue can be 

that the structure during a synthesis is different than expected. In that case, one must fit several 

structures from the database to the dataset to find the right model and maybe also create some 

structural models to supplement the modelling with. Another issue discussed in section 2.5 is that 

several structures can give reasonable fits to the dataset. A final common problem is the fitting process 

of the model to the dataset. This is normally done with dedicated software such as PDFGui47, Diffpy-

CMI48, SASVIEW49, 50, RMCProfile51 or TOPAS52. The fitting process itself can take a long time. 

Furthermore, the scientist often has datasets from multiple techniques, which all have to match with 

the same model. Overall, the conventional process of finding the right model to describe the data is a 

cumbersome process that often takes months and is constrained to expert users. Therefore, we need 

new approaches to analyse the data which is faster and more efficient than the conventional 

minimization approaches such as automated analysis that can be done while doing the measurements. 
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4 Using Machine Learning to Automate Modelling of 
Scattering Data 

When we have a chemical structure, we can analytically calculate its scattering pattern. However, 

going from a scattering pattern to a chemical structure is a more difficult process that needs modelling. 

This problem is called the inverse problem. While the inverse problem is often a difficult problem to 

solve for human people, it is an easy task for a ML algorithm. It has previously been shown that ML 

can automate the process from scattering data to structural model.36, 53, 54 ML serves as an excellent 

framework, which can tackle data from all sorts of techniques and data presentations for example 

both PDF and SAXS data in both reciprocal-space and real-space. The ML algorithm can be trained 

on numerous examples to learn trends in the dataset, which it can use to classify structures given a 

scattering pattern. This type of machine learning, where it is trained on examples with a known 

answer, is called supervised learning. We will demonstrate how supervised learning can be used to 

model both PDF and PDF data individually but also combined. Furthermore, we will discuss how 

various techniques can be used to extract reasons behind the predictions of a ML algorithm with a 

focus on Shapley additive explanations (SHAP). 

 

4.1 Gradient Boosting Decision Trees1 

Gradient Boosting Decision Trees (GBDT) is a type of supervised learning algorithm, which means 

it can predict a variable 𝒚W based on the input feature list, x. This is done with the use of decision trees, 

which predict variable, 𝒚W, using yes/no questions55 as shown in Figure 4.1. Here it is demonstrated 

how a tree-based method can be used to distinguish four different cluster structures based on their 

PDF. If a PDF is given as input feature list, x, to a decision tree, it can for example ask “Does the 

PDF have a Bi – O peak?” (Figure 4.1 top question) and thereby distinguish between the clusters 

containing oxygen atoms from the clusters not containing oxygen atoms. 

 

 

 
1 This Chapter is based on the theory presented in https://xgboost.readthedocs.io/en/latest/tutorials/model.html   
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Figure 4.1: Example of the use of a GBDT algorithm to predict the cluster structure, 𝒚", based on its PDF as the 

input feature list, x. The green box indicates the structure that would be predicted by this decision tree from 

this PDF. 

 

The trees are made by minimizing an error function on already labelled data, or ground truths, y. This 

process is referred to as training the algorithm.  

Equation 4.1 𝑜𝑏𝑗 = 	𝐸𝑟𝑟𝑜𝑟>:. =&𝑙]𝑦! , 𝑦_!
(<)`

=

!$%

 
 

Where obj or error function is a function summing all the ith trees with their prediction values, 𝒚W𝒊
(𝒕), 

at step t. yi is the true prediction value. The error function used to calculate the error value between 

𝒚W𝒊
(𝒕) and yi is annotated l. The user-defined input of the maximum of trees is given as n.  

 

   To understand the training process, let us consider an example where we train the algorithm to 

predict a 3rd degree polynomial (green curve) including noise as shown in Figure 4.2. In this case, we 

define the variable M as the number of variables that are used in the polynomial to fit the data. 

However, in the GBDT algorithm, this transfers to how complex the algorithm is. It is thereby a 

measure of how complex the GBDT algorithm is i.e. number of trees, depth of trees, leaf’s per tree 

etc. When no training has been done, the algorithm will always predict an average value as visualized 

in Figure 4.2A. However, after some training (M = 1, Figure 4.2B) the algorithm still predicts a line 
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but now with the right slope. This period, where the algorithm has not finished training, is referred to 

as underfitting. After some training (M = 3), the algorithm catches the trend of a 3rd degree 

polynomial. This is where the algorithm is trained to an optimal point. But if the algorithm is trained 

further, it will keep minimizing the error function and thereby describe all the points in the data which 

it has been trained on (training data), Figure 4.2D. While this behavior describes the training data 

very well (or perfectly), it would not generalize well to other points in a 3rd degree polynomial (the 

green curve). This behavior where the algorithm does predict perfectly on the training set but does 

not generalize well is referred to as overfitting. There are multiple tools to avoid overfitting. The most 

common tool is to split the data into training and validation set. Typically, this is a split of 80 % and 

20 % of the data. For every iteration the algorithm has been trained, it can be validated on the 

validation set in order to determine if it is in the underfit or overfit regime. Thereby, the optimal 

training iterations can be determined, in this case M = 3. Another way of avoiding overfitting is to 

increase the size of the training set on the cost of longer training time. 

 

Figure 4.2: Modelling of a 3rd degree polynomial with noise using A) A constant, B) A line, C) A 3rd-degree 

polynomial and D) A 11th-degree polynomial. 

 

4.2 Feature Ranking using SHapley Additive exPlanations analysis 

To analyse the nature of the GBDT algorithm or any other ML algorithms, it is very useful to know 

which features are important for the algorithm in its predictions. This research field is called 

interpretable machine learning and the method we will highlight is called feature ranking.  

The most intuitive form of feature ranking is permutation feature importance, which measures the 

increase in prediction error when values of a feature are permuted.56, 57  However, permutation feature 

importance is highly inaccurate on correlated data.56  

Another feature ranking method is Shapley values which come from coalitional game theory.58 A 

Shapley value quantifies how much a feature contributes to a prediction compared to the overall 

x

y

x

y

x

y

x

y

M = 0 M = 1 M = 3 M = 11A B C D



 

 

 

16 

 

prediction. The Shapley value is calculated by calculating weighted and summed feature contributions 

over all the possible feature value combinations. 

Equation 4.2 𝜙"(𝑣) = 	 &
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝! (𝑣N𝑆 ∪ g𝑥"iO − 𝑣(𝑆))
C⊆EF&,…,F'H∖EF(H

 
 

Where x is the feature values, p is the total number of features, S is the subset of features and v(S) is 

the prediction for feature values in the feature subset, S. The Shapley value does not need any form 

of user-defined inputs, however, they are computationally expensive to calculate.56 An alternative to 

Shapley values are SHAP values, which is a fast and accurate approximation of Shapley values.38 

The SHAP value is thereby a quantification of how much the input feature in a ML model pushes the 

prediction up or down from the average prediction. All the advantages of Shapley values do also 

account for SHAP values, however, it is an approximation that imposes smaller issues with highly 

correlated features. Another issue with SHAP values is that the feature value under investigation is 

randomized to calculate the Shapley values, which not necessarily is a good assumption. Both issues 

are under research but, to my knowledge, no python modules that are easy to access have been 

developed yet.59, 60 In general, interpretable machine learning is not an exact science, why we must 

interpret the models with great care.61 
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5 Following Structural Changes during the Growth of 
Atomically Precise Metal Oxido Clusters from 
combined PDF and SAXS analysis2 

Atomically precise bismuth oxido nanoclusters have recently been extensively investigated due to the 

well-controlled synthesis of bismuth oxido clusters in various sizes,1, 2 3 4-7 and bismuth have been 

used in applications as radiopaque materials4, 16 and photocatalysis.8-12 The ability to control the size 

of bismuth oxido clusters also makes them an excellent model system to understand growth 

mechanisms and nucleation reactions. The bismuth oxido clusters are reported to be built up by 

[BixOy]z+ units with varying charge and nuclearity.2 The clusters are stabilized by a negative charged 

ligand shell. We will in this Thesis neglect the charge and ligand shell and focus on the structural 

motifs of the bismuth oxido clusters. The clusters investigated here are built by edge-sharing 

octahedral [Bi6O8] units. Figure 5.1B illustrates a single octahedral unit, while Figure 5.1C–D 

illustrates the [Bi22O26] cluster which consists of 6 octahedral units and the [Bi38O45] which is built 

by 13 octahedral units. Generally, the nanoclusters can be considered as cut-outs of the fluorite-type 

structures as the δ- and β-Bi2O3.2, 3, 62 Metal oxido clusters with different elements than bismuth are 

also built of the octahedral [M6Ox] units as [Ce22O24],63 [Ce38O54],13 [U38O56],64 and [Pu38O56].65, 66 

The [M6Ox] building block is therefore anticipated to play a central part in the cluster growth.  

While the cluster structures are well-known from single crystal diffraction, it is more challenging to 

study the cluster growth in solution. Sattler et al. has investigated the cluster growth from [Bi6O8] to 

[Bi38O45] clusters using Electrospray Ionization Mass Spectrometry (ESI-MS),67 and identified the 

[Bi6O8], the [Bi22O26] and the [Bi38O45] as particularly stable cluster species. They also identified 

other fragments of bismuth oxido species in minor concentrations. However, while ESI-MS is very 

sensitive to small concentrations of charged fragments, it cannot be used to follow structural changes 

during a cluster growth reaction. Extended X-ray Absorption Fine Structure (EXAFS) and Nuclear 

Magnetic Resonance (NMR) can be used to characterize the atomic structure of clusters in solution68-

71 but both techniques are limited to the characterization of the atomic structure in the short range. 

 

 

 
2 This chapter is based on some of the results from Anker et. al., Structural Changes during the Growth of Atomically 

Precise Metal Oxido Nanoclusters from Combined Pair Distribution Function and Small-Angle X-ray Scattering 

Analysis, Angew. Chem. Int. Ed. 2021, 60, 2-12. Which is also included as Appendix V. 



 

 

 

18 

 

Here, we use in situ TS with PDF and SAXS analysis to follow the formation of the [Bi38O45] cluster, 

by dissolving crystalline [Bi6O5(OH)3(NO3)5]·3H2O72 (Figure 5.1A) in dimethylsulfoxid (DMSO). 

PDF is an excellent technique to characterize nanoclusters in solution because it is sensitive to the 

atomic structure of the clusters.65, 70 However, PDF is not sensitive to cluster shape and size 

distribution. Therefore, similar experiments have been done using SAXS which is highly sensitive to 

shape and size distribution.19, 48, 73, 74 To analyse the data, we have developed a new tool to identify 

intermediate species and map the reaction pathway. This automated intermediate extractor finds the 

best fitting structural motif that is contained in the [Bi38O45] cluster for every timestep of the reaction. 

This approach does not identify the [Bi6O8] cluster motif as a stable intermediate, but it finds 

intermediate species with a stable core of [Bi22O26]. Furthermore, combined modelling of PDF and 

SAXS data is introduced with the use of the Debye equation. The combined modelling confirms the 

[Bi38O45] cluster as the reaction product and the [Bi22O26] cluster as the intermediate and it is used to 

yield a robust phase fraction of the two phases. Overall, automated modelling of combined PDF and 

SAXS data seems like a promising approach to understand cluster growth mechanisms in solution. 

 

 

Figure 5.1: The structure of the A) [Bi6O5(OH)3(NO3)5]·3H2O crystal.72 B) single octahedral [Bi6O8] unit. C) 

[Bi22O26]5  cluster. D) [Bi38O45]15 cluster. Bismuth is shown in purple, oxygen in red, and nitrogen in blue for all 

structures. Hydrogen atoms have been omitted for clarity. Adapted from Anker et al.33 

 

5.1 Using conventional refinement approaches to analyse the growth of bismuth 
oxido nanoclusters 

Figure 5.2A–B shows in situ TS data in Q-space and r-space obtained during the cluster growth 

reaction of [Bi6O5(OH)3(NO3)5]·3H2O in DMSO at T = 80 °C. Experimental details are given in 

Appendix II. The two data representations highlight complimentary information. Figure 5.2A shows 

Bragg peaks in the first 10 min of the reaction, which indicates a crystalline phase. It would be 
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intuitive that the crystalline phase at the beginning of the reaction is [Bi6O5(OH)3(NO3)5]·3H2O, why 

a pattern of [Bi6O5(OH)3(NO3)5]·3H2O were simulated and compared with the data in Q-space at t = 

0 min,  Figure 5.2D. The experimental dataset possesses very similar peaks as the simulated dataset 

of crystalline [Bi6O5(OH)3(NO3)5]·3H2O, however, the background of the experimental dataset 

makes it difficult to model with for example a Rietveld refinement. Therefore, the data were 

investigated in r-space instead. Background subtraction of the data in r-space is shown in Appendix 

II. The crystalline phase is observed in the r-space data, Figure 5.2B, as peaks up to large r-values. 

Figure 5.2E demonstrates a fit of the crystalline [Bi6O5(OH)3(NO3)5]·3H2O phase to the first dataset 

of the in situ dataset in r-space. After t ~ 7 min the crystalline precursor begins to dissolve as seen 

from the disappearing of the Bragg peaks in Figure 5.2A and by the disappearing of the peaks at high 

r-values in Figure 5.2B. Modelling in Q-space was not attempted due to the very broad scattering 

signal as seen in Figure 5.2A and further highlighted in Figure 5.2D. The broad features in the Q-

space data are most likely due to diffuse scattering. Instead, the last frame of the data in r-space was 

modelled with a [Bi38O45] cluster, confirming that this is the product of the reaction, Figure 5.2F.     

   However, as shown in Figure 2.4, the model that fits the TS data is not necessarily unique. 

Therefore, we conducted a similar SAXS experiment to confirm the results. TS and SAXS datasets 

obtained from similar experiments performed at lower temperatures (T = 30–60 °C) can be found in 

Appendix II. Figure 5.2C shows the in situ SAXS experiment obtained from crystalline 

[Bi6O5(OH)3(NO3)5]·3H2O in DMSO at T = 80 °C. Again, Bragg peaks are observed at the beginning 

of the reaction, which broadens after approximately 7 minutes. The Bragg peaks at the beginning of 

the reaction have the same Q-values as for the TS experiments, indicating that the crystal is 

[Bi6O5(OH)3(NO3)5]·3H2O. Again, the last frame of the experiment was modelled with the [Bi38O45] 

cluster, Figure 5.2G, confirming the results from the PDF modelling. The PDF and SAXS modelling 

details are described in Appendix II. 
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Figure 5.2: The background subtracted in situ X-ray TS data obtained during the experiment performed at T 

= 80 °C plotted as a function of time. While Bragg peaks are seen at the beginning of the reaction, only diffuse 

features are seen after dissolution. A) Data presented in Q-space B) Data presented in r-space. C) The 

logarithmic background subtracted SAXS data obtained during the experiment performed at T = 80 °C plotted 

as a function of time. While Bragg peaks are seen at the beginning of the reaction, only diffuse features are seen 

after dissolution. D) The simulated X-ray TS data of the crystalline [Bi6O5(OH)3(NO3)5]·3H2O, compared to 

background subtracted data obtained after t = 0 min and t = 70 min of the T = 80 °C in situ experiment. E) The 

fit (Rwp = 29.0 %) of the [Bi6O5(OH)3(NO3)5]·3H2O crystal structure to the PDF obtained after t = 0 in the in 

situ experiment at T = 80 °C. F) The fit of the [Bi38O45] cluster structure to the PDF obtained at the end of the 

experiment at t = 70 min. Rwp = 16.6 %. G) The fit (Rwp = 3.1 %) of the [Bi38O45] cluster structure to the SAXS 

data obtained after t = 37 min at the in situ experiment at T = 80 °C. The SAXS data are plotted in a log-log 

plot. Adapted from Anker et al.33 

 

We have now established how crystalline [Bi6O5(OH)3(NO3)5]·3H2O dissolves into a cluster in 

DMSO, which grows to the [Bi38O45] cluster. However, we have yet not investigated the intermediate 

cluster species during the growth mechanism. Figure 5.3A–B shows chosen PDF and SAXS data 

through the in situ reaction. The data represents the crystalline [Bi6O5(OH)3(NO3)5]·3H2O in the 

beginning of the reaction and the [Bi38O45] cluster in the end of the reaction. The intermediate dataset 

has similar motifs as the last dataset but the PDF damps at a lower r-value indicating a smaller species. 

Furthermore, the intermediate species are more disordered than the [Bi38O45] cluster seen from the 

asymmetric peak in Figure 5.3D. Therefore, we suggest that the intermediate must be structurally 

correlated with the [Bi38O45] cluster but present as a smaller and more disordered species.  
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   [Bi6O8] cluster has previously been theoretically predicted to form in DMSO with molecular 

dynamic simulations1 and experimentally it has been described as particularly stable.62, 67 Therefore, 

the PDF and SAXS scattering patterns were simulated from the [Bi6O8] cluster and compared to data 

through the reaction, Figure 5.3A–B. The simulated data of the [Bi6O8] cluster does not match any of 

the datasets and it is too small based on the lack of long-range peaks in the PDF. Oppositely, the 

intermediate PDF or SAXS data is not well described by the [Bi38O45] cluster either, Figure 5.3C and 

Figure 5.3E.  

 

 

Figure 5.3: Comparisons between calculated patterns from an isolated  [Bi6O8] unit and experimental (A) PDFs 

and (B) SAXS data (plotted on a log-log scale). C) The fit of the [Bi38O45] cluster structure to the PDF obtained 

just after the dissolution of the crystalline starting material, t = 8 minutes, for the in situ experiment obtained 

at T = 80 °C. D) The asymmetric peak at r = 3.8 Å in the PDF. E) The fit of the [Bi38O45] cluster structure to the 

SAXS data (plotted on a log-log scale) obtained just after the dissolution of the crystalline precursor t = 16 

minutes, for the in situ experiment obtained at T = 80 °C. Adapted from Anker et al.33 

 

To understand the size evolution through the reaction, we applied SAXS form factor analysis of the 

in situ SAXS data using a spherical model with a lognormal size distribution. Figure 5.4 shows the 

change of diameter and dispersity of the clusters through the reaction. Modelling details and two 

examples of fits are given in Appendix II. During reaction, the clusters grow and get more 

monodisperse. We therefore attempt to fit other bismuth oxido clusters with a similar local structure 

as the [Bi38O45] but with a smaller size. Figure 5.5 illustrates fits of various cluster sizes from [Bi6O8] 

to the [Bi38O45] to the intermediate PDF dataset. It is observed how the [Bi18O36] and [Bi22O38] models 

make the best fits, but a unique cluster structure is still not determined. 
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Figure 5.4: The diameter and dispersity of the clusters, plotted as a function of reaction time at 5 different 

reaction temperatures. The values are obtained from a SAXS form factor analysis using a spherical model with 

a lognormal size distribution. The data analyzed here were obtained at SWING at Soleil, but similar results 

from the analysis of data from ID02, ESRF are shown in Appendix II. Adapted from Anker et al.33 

 

 

Figure 5.5: The PDF obtained after t = 8 min for the in situ experiments at T = 80 °C is fitted to different 

bismuth oxido clusters, which were cut out of their corresponding crystal structures.5, 7, 15, 46, 72, 75, 76 Adapted 

from Anker et al.33 
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5.2 Developing ‘automated intermediate extractor’ to determine the intermediate 
cluster 

We have now seen that the intermediate species has the same local motif as the [Bi38O45] built up by 

edge-sharing [Bi6O8] units and that it has a size approximately about the size of the [Bi18O36] and 

[Bi22O36] cluster. However, to get an overview of the intermediate species during the reaction, we 

created an algorithm that automatically extracts the intermediate structure which I refer to as 

automated intermediate extractor. Automated modelling has previously been proposed by Yang et 

al.35 and Banerjee et al.30 who automated characterization of crystal structures and metal 

nanoparticles. In another recent study, Christiansen et al. extract structural motifs of disordered 

molybdenum particles by automatically fitting fragments of known polyoxometalate structures to the 

PDF.22 I will refer to this approach as automated motif extractor. 

   The method uses the methodology in the latter paper. We have adapted automated motif extractor 

to extract intermediate species of in situ PDF data. The principle of the algorithm is illustrated in 

Figure 5.6. First, the last frame of the dataset is modelled, which we know corresponds to the [Bi38O45] 

cluster. The goal is to validate that there is no smaller structural motif with the same local order that 

fits the data better than the [Bi38O45] cluster. This is checked by removing atoms systematically from 

the structure and fit them to the data. In order to test all combinations of atoms, which is done in 

automated motif extractor, 382 – 1 fits have to be made. Since this is not computationally feasible, 

we restrict the algorithm to remove up to 8 atoms from the outer shell of the [Bi38O45] cluster. Finally, 

all oxygen atoms which were not bonded to at least a single Bi atom were removed. The longest 

allowed bond length was set to 2.5 Å, which is the longest Bi···O distance observed in the 

experimental PDFs. The best-fitting model is chosen based on the Rwp value. When this procedure is 

done, the process is proceeded for the next frame in the dataset (starting from the last and going 

towards the first frame). The best-fitted structure from the previous frame is now added 3 atoms in 

the outer shell and the procedure is continuing with removing up to 8 atoms. 
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Figure 5.6: The pseudo-code of the automated modelling process shows that: firstly, the last frame of the in situ 

dataset is modelled with the [Bi38O45] cluster structure, and all structures where up to 8 Bi atoms from the outer 

shell is removed together with non-bonding oxygens. This is 28 = 256 candidate structures in total. The best-

fitting structure is added three Bi atoms and used as the starting-point for the fitting of the second-last frame. 

The addition of the Bi-atoms is done in order to prevent false minima in the algorithm. The process is repeated 

for all frames in the reaction. Adapted from Anker et al.33 

 

This modelling approach gives an overview of the best fitting intermediate species through the 

reaction that has the same structural motif as the [Bi38O45] cluster. Figure 5.7A–C shows the number 

of Bi atoms of the best fitting structures during the reaction for the in situ PDF dataset obtained with 

T = 80 °C, 60 °C and 30 °C. For the high temperature dataset, T = 80 °C, large structures with about 

32 atoms are preferred, while plateaus of structures with 26 atoms and 22 atoms are stable for the 

dataset obtained at T = 60 °C and 30 °C. Results for the datasets obtained at T = 40 °C and 50 °C are 

shown in Appendix II. A histogram of the occurrence of cluster sizes through the reactions is 

illustrated in Figure 5.7D. A large portion of clusters in the range 20–25 atoms are found. Figure 

5.7E–H shows fits of chosen dominant cluster species from the automated intermediate extractor. 

While the structures fit the data well, they are unphysical with ‘dangling’ Bi atoms but they all contain 

the same Bi22 motif in the backbone of the structure. This is especially clear for structure III and IV, 

which is compared to a [Bi22O26]5 structure in Figure 5.8. 
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Figure 5.7: Number of bismuth atoms in the best fitting structure for each frame is plotted versus the reaction 

time for the experiments done at A) T = 80 °C, B) 60 °C and C) 30 °C. D) A histogram of each unique best 

fitting structure found with the automated modelling process through the reaction. Frequency is the number 

of times the specific cluster size (number of Bi atoms) is present during the reaction. Some sizes are present 

multiple times. E–H) Representative clusters and fits that have been obtained in the automated modelling 

process. Adapted from Anker et al.33 

 

When modelling the intermediate datasets with the physical [Bi22O26] structure, cut out of a 

[Bi22O26(OSiMe2tBu)14] crystal,5  a comparable fit to the unphysical structures are obtained, Figure 

5.8B–C. The automated intermediate extractor thereby indicates that the intermediate is a [Bi22O26] 

cluster that grows through the reaction. Other cluster species such as the Bi28 and Bi32 also appear 

through the analysis, however, these do not appear physical as closed-shell clusters. The results are 

supported by the SAXS form factor analysis, which also showed a growing size through the reaction 

and a decreasing size dispersity of the particles indicating that there can be multiple cluster species 

present simultaneously in the beginning of the reaction.  
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Figure 5.8: A) The [Bi22O26] cluster from Mansfeld et al.5 has a similar structure to structure III and IV, found 

from the automated modelling method. The fit to the in situ PDF (T = 30 °C) obtained at B) t = 152 min and C) 

t = 103 min using the [Bi22O26] cluster as the model. Adapted from Anker et al.33 

 

It has now been established that the intermediate cluster species of the reaction is a [Bi22O26] cluster 

and the product of the reaction is the [Bi38O45] structure. Therefore, it was investigated if the data is 

better described with a 2-phase system of the [Bi22O26] and [Bi38O45] cluster compared to the best 

fitting average structure obtained from the automated intermediate extractor. 

   In Figure 5.9 data from four steps during the reaction is investigated. The best-fitting average cluster 

model from the automated motif extractor is compared with a 2-phase refinement of the [Bi22O26] and 

[Bi38O45] cluster using PDF and SAXS Debye modelling and SAXS form factor analysis. Late in the 

reaction, the one-structure model is very similar to the 2-phase refinement. However, earlier in the 

reaction, T = 30 °C, the 2-phase refinement is describing the SAXS data significantly better. Thereby, 

it can be concluded that the 2-phase refinement using the [Bi22O26] and [Bi38O45] cluster yields the 

best description of the data throughout the entire reaction. Modelling details of the refinements are 

shown in Appendix II. Appendix II also contain further argumentation for the 2-phase fit describes 

the data over the entire reaction of the T = 80 °C experiment better than the individual phases.   
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Figure 5.9: Comparison of fits using the best fitting cluster structure identified with the automated modelling 

process or using a 2-phase model with the [Bi22O26[ and [Bi38O45] cluster are used to selected PDFs and SAXS 

patterns obtained during the in situ experiments at A – B) T = 80 ° and C–D) T = 30 °C. The fits to the PDF and 

SAXS data using the structure models obtained from the automated modelling process are shown to the left 

(modelled using the Debye function), together with a simple SAXS form factor analysis of the SAXS data. The 

fits to the PDF and SAXS data using a two-structure model of [Bi38O45] and [Bi22O26] are shown to the right 

(modelled using the Debye function), with a SAXS form factor analysis, here including two particle shapes 

corresponding to the [Bi38O45] (spherical) and [Bi22O26] (ellipsoid) clusters. Adapted from Anker et al.33 
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5.3 Using combined PDF and SAXS modelling to achieve robust and accurate 
results 

Now that it has been established that the best description of the reaction is a 2-phase refinement with 

the [Bi22O26] and [Bi38O45] cluster, the phase fractions during reaction can be determined. Figure 5.10 

shows the phase fraction of the two clusters during the reaction at temperatures T = 80 °C, 60 °C and 

30 °C. Results for T = 40 °C and 50 °C are shown in Appendix II. The red curves indicate the results 

from PDF analysis, the blue curves indicate results from SAXS analysis, and the green is from 

combined analysis of the PDF and SAXS data. After the crystalline [Bi6O5(OH)3(NO3)5]·3H2O is 

dissolved in DMSO, the [Bi22O26] phase is dominant. However, during the reaction, the [Bi22O45] 

cluster species grow to the [Bi38O45] cluster which ends as the dominant phase at high temperature, T 

= 80 °C, or after a long time at room temperature, Appendix II, which also shows that the results are 

similar if the [Bi6O4(OH)4(NO3)6(H2O)2]·(H2O) crystal is used as the crystalline precursor. At all 

three temperatures, the results from the PDF and SAXS analysis follow the same trend, indicating 

that the kinetics of the experiments are close to equivalent. Therefore, it is intuitive to try combined 

modelling of the PDF and SAXS data, which results are indicated with green curves.  

 

Figure 5.10: The phase fractions of the [Bi22O26] and [Bi38O45] clusters, plotted as a function of time for 

experiments at A) T = 80 °C, B) 60 °C and C) 30 °C. The results from PDF analysis are plotted in red, from 

SAXS analysis in blue, and from complex modelling in green. Adapted from Anker et al.33 

 

Combined modelling of data from multiple techniques is in the literature referred to as ‘complex 

modelling’.48, 51, 73, 74, 77 Complex modelling of PDF and SAXS data have previously been shown to 

yield a more robust description of shape and size than PDF modelling alone.73 A similar approach 

has been used in this project, using the Diffpy-CMI framework, which was originally written to enable 

complex modelling of data from multiple techniques.48 However, Farrow et al. modelled the data 

using a crystalline model applying a ‘shape’ function to mimic the finite size of the nanocrystal,73 

whereas we model the data using the Debye equation.  
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   To my knowledge a yet unsolved problem when doing complex modelling has been the weighting 

of the datasets. In this project, the optimal weighting of the datasets has been determined by making 

a ‘calibration’ of the weights. Figure 5.11 shows the effect of using various weights for PDF and 

SAXS data in the complex modelling approach when modelling the data obtained after t = 37 min 

from the in situ experiment at T = 80 °C. When the weights are in a ratio 1:1 (PDF:SAXS), the PDF 

fit is identical to fitting the PDF data individually, however, the fit of the SAXS data is not optimal. 

When using a weight ratio of 1:1000, the SAXS data is well-described, but the PDF data is not. In 

order to achieve satisfying fits for both techniques a weight between 1 and 1000 has to be used.  

 

 

Figure 5.11: The fits of the PDF & SAXS data obtained during in situ experiments after t = 70 min (PDF) and 

t = 37 min (SAXS) at T = 80 °C using complex modelling with different weights. Here the weight of 1:20 means 

that the residuals from the SAXS fit are multiplied by 20 times in the fitting process. Adapted from Anker et 

al.33 

 

To find the optimal spot where both the PDF and SAXS data are satisfied in the fitting process, a 

calibration curve is made as shown in Figure 5.12. The Rwp value of the PDF and SAXS fit is plotted 

versus the weight ratio used. When lower weight ratios are used, the PDF data is fitted well, while 

the SAXS data is fitted well for higher weight ratios. However, when using a weight ratio of 1:125, 

both datasets achieve low Rwp values. 
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Figure 5.12: The Rwp values of the PDF and SAXS fit on the T = 80 °C, t = 70 min (PDF) and t = 37 min (SAXS), 

in situ data from complex modelling with different weights shows that there is an optimal weight, which favours 

both techniques. Adapted from Anker et al.33 

 

This weight was therefore used in the complex modelling procedure shown in Figure 5.10. Similar 

analysis of phase fraction versus reaction time were made using other weights from weight ratio 1:1 

to 1:1000 shown in Figure 5.13. The same trend as Figure 5.11 and Figure 5.12 is seen. When the 

weight is not calibrated, the results of the complex modelling approach mimic the results of one of 

the datasets individually. However, when an optimal weight ratio of 1:125 is used, the complex 

modelling approach does optimize the fitting quality of both datasets. It is thereby concluded that a 

weight ratio of 1:125 must be used to get the best overall description of the PDF and the SAXS data. 

 

 

Figure 5.13: Varying the weights of the PDF or SAXS data in the complex modelling affects the results 

significantly. Adapted from Anker et al.33 
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Now, it has been established that the crystalline [Bi6O5(OH)3(NO3)5]·3H2O dissolves in DMSO and 

forms the intermediate cluster species [Bi22O26] faster than the time resolution for our experiments. 

However, it cannot be excluded that any intermediate species smaller than [Bi22O26] exists. 

Afterwards, a slow growth from [Bi22O26] to [Bi38O45] is happening, which’s kinetics is temperature 

dependent. The reaction mechanism is illustrated in Figure 5.14.  

   The chemical insight gained in this study can potentially be transferred to other metal oxido cluster 

systems or especially the ones of the fluorite type. The approach of using both PDF and SAXS 

analysis have shown great potential to study nanoclusters in solution and the modelling approaches 

presented here can both be used to automatically extract intermediates and to combine modelling of 

PDF and SAXS data using the Debye equation. 

 

 

Figure 5.14: The proposed reaction mechanism. The crystalline [Bi6O5(OH)3(NO3)5]·3H2O dissolves in DMSO 

and goes through a disordered [Bi22O26] cluster intermediate before forming atomically precise [Bi38O45] 

clusters. It cannot be excluded that other intermediate clusters exist during the reaction; however, they could 

not be identified in our experiments. Adapted from Anker et al.33 
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6 Using a Gradient Boosting Decision Tree Algorithm 
together with SHapley Additive exPlanations to 
Extract Structural Motifs from PDF and SAXS data 

We have seen in Chapter 5 that automated modelling can be used to extract the intermediate species 

during a reaction by fitting a large number of candidate structures built from the [Bi38O45] cluster. 

The dataset is fitted sequently in reverse order. Firstly, the [Bi38O45] cluster is tested with all candidate 

structures where up to 8 Bi atoms from the outer shell are removed. The best-fitting candidate is then 

used as a starting point for the next frame. Here, 3 atoms are added to the outer shell whereafter the 

procedure is redone. This process is iteratively repeated for the entire dataset. However, the presented 

method is computationally expensive, and the candidate structures are limited to all structures with 

up to 8 Bi atoms removed limiting, whereas we in principle would like to test all candidate structures 

where up to 38 Bi atoms are removed. With this drastic constrain, the algorithm still takes a few days 

to run on a MacBook Pro 2017. For each frame, the algorithm produces 28 fits, which each yields an 

Rwp value (A description of the Rwp value is given in Appendix III). For the automated motif extractor, 

it is only the model with the lowest Rwp value, which is used for further analysis, thereby discarding 

the information of all other fits.  

   Here, we introduce a new approach using machine learning (ML) to evaluate results from automated 

modelling. Machine Learning based Motif Extractor (ML-MotEx), which is illustrated in Figure 6.1, 

first builds a catalogue of hundreds or thousands of candidate structure motifs which are all ‘cutouts’ 

from a chosen starting structure, and then fit these individual models to a dataset. The structures and 

Rwp values from each fit are handed to an ML algorithm applying gradient boosting decision trees 

(GBDTs), which learns to predict Rwp values based on an atomic structure model. This allows 

expanding the structural space that can be evaluated compared to the brute-force methods. Most 

importantly, the ML-MotEx algorithm then outputs quantified values of how important each atom or 

feature in the starting structure is for the fit to yield a low Rwp value with the given fitting algorithm. 

This is done by using SHAP (SHapley Additive exPlanations) values, as discussed in detail below.38 

   ML-MotEx is significantly faster and less biased than the brute-force intermediate extractor due to 

the ability to use the information from all the fits made. Furthermore, we extend the method to use a 

‘cookie-cutter’ strategy to generate a catalogue of candidate structure motifs. We demonstrate that it 

is possible to obtain knowledge of dominating structural motifs from PDF data in an automated 
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manner using ML. We show a simple example on a single dataset where the [Bi38O45] cluster is cut 

out of the β-Bi2O3 structure with the use of ML-MotEx. However, in principle, the ML-MotEx 

approach can be applied to find intermediate species in an in situ dataset, allowing more robust results 

than the brute-force intermediate extractor presented in Chapter 5.2. 

 

Figure 6.1: Illustration of how ML-MotEx extracts the structural motif that fits the data from a starting model 

by generating a catalogue of candidate structure motifs, fitting them to the data, training a machine learning 

algorithm to predict the Rwp value and finally calculating quantified values of atom importance for the fit 

quality. 

 

6.1 From input to output: ML-MotEx in 4 steps 

Overview of the algorithm 

ML-MotEx consists of four parts, which are all fully automatic. These four parts are shown in the 

simplified pseudo-code of the algorithm in Figure 6.2. In the first part, a starting model is used to 

generate a catalogue of candidate structure motifs. In the second part, a fitting script is used to fit the 

generated candidate structure motifs to the dataset. The fitting parameters can be seen in Appendix 

III. In the third part, the ML algorithm is optimized and trained, while SHAP values of the structural 

features in the models are calculated in the fourth part. The output of the algorithm is thus the starting 

model along with SHAP values indicating the importance of each individual atom in the structure, or 
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in other words; how much each individual atom affects the Rwp value either positively or negatively. 

A further description of the individual steps of the algorithm is given in the next sections.  

 

Figure 6.2: Pseudo-code that describes the four steps of the ML-MotEx algorithm. 

 

Part 1: Creation of a catalogue of candidate structure motifs 

The first step in ML-MotEx is to use a starting structure model to generate a catalogue of candidate 

structure motifs, which are all fitted to the data. In order to only produce physically sensible clusters 

from the β-Bi2O3 structure, the strategy for generating the structural motifs is different than for the 

brute-force automated intermediate extractor. Rather than using permutations over different atoms in 

the structure, we cut out geometrically reasonable shapes using a ‘cookie-cutter’ strategy. Instead of 

deleting a number of random atoms, a range of reasonable shapes and sizes are made from the β-

Bi2O3 structure. Four shapes are used; spherical, cubic, ellipsoidal and disk in appropriate sizes 

concerning the starting model. All the atoms in the starting model were kept or removed according to 

if they were inside the geometric object or not. Further details about the cookie-cutter algorithm can 

be found in Appendix III. One of the advantages of the cookie-cutter strategy is that we get structural 

parameters like shape, size, volume and sphericity, from the candidate structure motifs, which we fit 

the data. Sphericity is a measure of how spherical an object is. A sphere has a sphericity of 1, while 

a cube has a sphericity of 0.806 and an ellipsoids sphericity depends on its radii. The equation and a 

detailed description of sphericity are given in Appendix III. The cookie-cutter procedure is used to 

generate the catalogue of candidate structure motifs, while the corresponding fits are done with a 

fitting algorithm to yield a Rwp value. 

 

Part 2: Fitting the catalogue of candidate structure motifs to the data 

In the next step, we fit each of the structures in the catalogue of candidate structure motifs to the 

experimental PDF. We here use the Python-based program Diffpy-CMI48 for PDF fitting, but this 

could equally be done with other software packages such as DISCUS,78, 79 TOPAS,52 or any other 
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program that can be used to model X-ray or neutron scattering data. The output of the fit is a Rwp 

value reflecting the quality of the fit.  

 

Part 3: Predicting Rwp values using Gradient Boosting Decision Trees 

We use GBDTs to evaluate the results from the fits of the catalogue of the candidate structure motifs 

to the experimental PDF. The aim of this step is for the algorithm to learn how to predict Rwp values, 

generated in part 2, based on the input which is the catalogue of candidate structure motifs generated 

in part 1.  

   GBDT is a tool that can do classification or regression using decision trees. In this work, we are 

using the GBDT tool to do the regression task of predicting the Rwp value based on the structural 

input given as zeros or ones. The optimization is done by making trees of ‘yes’ and ‘no’ questions on 

whether to keep an atom in the structure or not (based on the resulting Rwp value). An example of a 

simple tree can be seen in Figure 6.1. When atom 4 is present in the structure, the GBDT algorithm 

will predict a Rwp value that is 5 % lower than if atom 4 is not present in the structure. In the same 

way, it will predict an Rwp value that is 12 % lower if atom 1 is present in the structure. In reality, the 

GBDT algorithm will make 100 trees and do a weighting of them.  

   In this project, XGBoost55 has been used as the GBDT algorithm with the use of default parameters 

except for learning rate and max depth, which were optimized with the use of Bayesian optimization 

using 50 iterations and cross-validation split on 3.80 A lower iteration number and fewer cross-

validation splits can be used to achieve faster optimization time, on the cost of performance. The 

process of training the GBDT algorithm is done on 80 % of the data. The last 20 % of the data is used 

to validate the performance of the algorithm. The GBDT algorithm performance is better with a large 

amount of training data, which in this tool is provided by creating a larger catalogue of candidate 

structure motifs and fitting them to the data. 

 

Part 4: Quantifying the effect of structural features with SHAP values 

SHAP values are used to analyze the Rwp values resulting from the process described above. The 

amplitude of a SHAP value contains information about how important a structural feature is, while 

the sign of the SHAP value reflects whether the feature affects the Rwp value of the fit towards 1 (poor 

fit) or 0 (perfect fit), in other words why it is important. In this work, the results can be visually 

inspected as the atoms in the starting model are colored according to their SHAP values using green 

for low SHAP values (tendency to keep atom, pushing Rwp down) and red for high SHAP values 

(tendency to remove atom, pushing Rwp up). Any 3D visualization tools for structural models, which 

can visualize XYZ files, can be used such as VESTA81 or CrystalMaker.82 
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6.2 Extracting Structural Motifs from PDF data of the [Bi38O45] cluster 

It is well known that [Bi38O45] (Figure 6.3A) is a stable cluster structure.62, 83 If considering the cluster 

structure, it can be seen that this can be described as a cut-out of the β-Bi2O3 structure, Figure 6.3B.62, 

83 We can therefore apply the ML-MotEx method for analysis of a PDF from this cluster, using a β-

Bi2O3 starting model. The starting model is thus a discrete model consisting of 2x2x3 unit cells of the 

β-Bi2O3 structure. 

   Figure 6.3C shows the experimental PDF obtained from a solution of [Bi38O45] clusters compared 

to the simulated PDF data of the discrete starting model built from 2x2x3 unit cells of the β-Bi2O3 

structure. As expected, the local range of the PDFs from the two structures are highly similar, but 

peaks to higher r-values are present for the β-Bi2O3 starting model. This illustrates that the local 

structure is the same in the [Bi38O45] sample as the starting model, but that the cluster size is smaller. 

 

 

Figure 6.3: A) The [Bi38O45] cluster B) The β-Bi2O3 structure with highlighted polyhedra in red and green, 

where the green corresponds to the [Bi38O45] cluster. Some polyhedra are drawn as balls and stick instead, to 

enhance visibility. C) Comparison of the experimental PDF of the [Bi38O45] cluster and simulated data of a 

2x2x3 unit cell of β-Bi2O3. The simulation parameters mimic typical values of a PDF dataset and can be seen 

in Appendix III. 

 

After constructing and fitting these models to the PDF, we can analyze the results from the brute-

force approach before moving to ML. Figure 6.4A shows all the Rwp values obtained from the PDF 

fits, where the fit quality is plotted versus the number of bismuth atoms. The refinement parameters 
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are given in Appendix III. It is evident that the Rwp values are lowest when a structure of 38 Bi atoms 

is used to fit the data, however, the curve is not very shallow. In Figure 6.4B, the Rwp values are 

plotted for the 4 different shape categories used in the ‘cookie-cutter’ strategy. The color of the point 

indicates the sphericity. The plot shows that cube-shaped structures generally result in higher Rwp 

value than the other shapes, ruling out this shape for describing the cluster structure. The spheres 

generally give good fits, but the structures providing the lowest Rwp values are not spherical. The 

structures resulting in the lowest Rwp values are ellipsoids or disks, however, common for those two 

shapes is that the best fitting structures have high sphericity, meaning that the structure is very close 

to being spherical. In Figure 6.4C, the results of fitting spherical models to the data is further analyzed. 

The figure shows the Rwp value plotted as a function of radius, showing a minimum at ca. 7.2 Å. 

Similar plots of the volume and ellipsoidal radius are shown in Appendix III. 

 

 

Figure 6.4: Overview of the Rwp values of the PDF fits versus important structural parameters. A) The Rwp 

values versus the number of bismuth atoms present in the structure, B) The Rwp value versus the shape and 

sphericity of the structures and C) The Rwp value versus the spherical radius of the structures made with a 

spherical shape. 

 

We now again move to ML-analysis for further atomistic understanding. Again, this allows taking all 

5950 fits into account when finding an appropriate structural motif that fits the data. Figure 6.5 shows 

the results of the SHAP analysis of the motifs made from the discrete starting model built from 2x2x3 

unit cells of the β-Bi2O3 structure and their corresponding Rwp values.  



 

 

 

38 

 

 

Figure 6.5: SHAP summary plot from ML-MotEx utilized on PDF data from the [Bi38O45] cluster. 

 

The SHAP value plot shows that the model does not prefer a low number (blue color) atoms in the 

model, however, when more than approx. 20 atoms is reached, it does not make a large difference in 

how many atoms are included in the model. The plot also tells the effect of each atom’s contribution 

to the prediction of the Rwp value of the model. For example, atom 24 has negative SHAP values 

when it is included in the candidate structure motif. We interpret that atom 24 contributes to a low 

Rwp value. We can thereby construct the structure of the 38 Bi atoms with the lowest SHAP value 

when they are included in the model. This model is illustrated in Figure 6.6B. 

   In Figure 6.6, the result from the brute-force approach (Figure 6.6A) is compared to the result of 

the ML-MotEx approach (Figure 6.6B). The best structure found with the brute-force approach is 

shown in Figure 6.6A where the green octahedra represent parts of the [Bi38O45] structure. This 

structure can be fitted to the PDF data with an Rwp value of 16.6 % as seen in Figure 6.6C. Figure 

6.6B illustrates the structure when all other than the 38 Bi atoms with the lowest SHAP value are 

removed. This structure fits the data with an Rwp value of 17.4 % (Figure 6.6D), however it contains 
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more of the original [Bi38O45] structure than the brute-force model does. The fitting parameters and 

fits of the [Bi38O45] are shown in Appendix III. 
 

 

Figure 6.6: Structural visualization of the kept atoms in the 2x2x3 unit cell of β-Bi2O3 with highlighted 

polyhedra from the [Bi38O45] cluster using A) The Brute-force approach. B) ML-MotEx approach. The fits to 

the dataset of the [Bi38O45] cluster using C) The cluster illustrated in A. D) The cluster illustrated in B. 

 

In conclusion, the brute-force routine itself of making a catalogue of candidate structure motifs and 

investigating the Rwp values reveals valuable insight into the structure. However, it is still a 

cumbersome process to use all this information to build a structure that fits the data. One can simply 

use the best fit, however, it is a biased approach, and it does not necessarily represent the majority of 

the structures with the best fits. By applying ML-MotEx a reasonable structural estimate is obtained, 

which can be used with chemical knowledge to construct the right model that fits the data.  

   We also tested the ML-MotEx approach on SAXS data. However, as shown in Appendix III, the 

missing atomistic information means that the SAXS results are less meaningful, and PDF is thus 

better suited for identifying which atoms should be included in the model using the ML-MotEx 

approach than SAXS data is. 
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7 Using a Gradient Boosting Decision Tree Algorithm 
to screen large Databases of matching 
Polyoxometalate Clusters to a PDF 

Characterizing the atomic model in PDF data via conventional data analysis methods was in Chapter 

5 demonstrated to be a highly complicated and time-consuming process. 

   Here, We present POMFinder, an algorithm that can automatically identify polyoxometalate (POM) 

clusters from PDF data. The algorithm has been trained on simulated PDF data of 443 POM cluster 

fragments, which are cut out of metal oxide crystals from the Crystallography Open Database (COD) 

and the Inorganic Crystal Structure Database (ICSD). The algorithm predicts the right structure 94.0 

% of the time on simulated data, and it provides us with promising results on experimental PDF data.  

We furthermore show that the method can be extended to jointly use data from multiple scattering 

techniques instead of modelling the data separately: the ‘complex modelling’ approach. We use PDF 

and SAXS data. We demonstrate that the algorithm can instantly predict the structure of free 

[H2W12O40]6- ions with the 𝛼-Keggin structure.32 POMFinder enables automated PDF and SAXS 

modelling, which can be used directly while measuring the data without the need for any prior 

knowledge. 

 

7.1 From input to output: POMFinder in 3 steps 

Overview of how POMFinder was created 

The goal of this project is to create a ML algorithm that can match an atomic structure to an 

experimental dataset. We have chosen to focus on PDF and SAXS data as the structural 

characterization techniques, however, in principle the dataset can be any information that can be used 

to characterize an atomic structure. We used a self-created POM database but this could be any 

database of any structure type. 

   A pseudo-code of how to create POMFinder can be seen in Table 7.1.  The algorithm consists of 3 

parts, which are building a POM database, simulating data from the database and training a GBDT 

algorithm on the simulated data. The structural database of POM clusters is built from CIF files from 

both COD and ICSD using chemical restraints appropriate for POM clusters. Afterwards, a number 

of datasets of each POM cluster are simulated using Latin hypercube sampling84 and a GBDT 
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algorithm55 is trained to classify which POM structure the dataset matches. In the following sections, 

we will elaborate on how POMFinder is created. 

 

Table 7.1: Pseudo-code that describes how to create the POMFinder algorithm. 

 

Part 1: Building a database of polyoxometalate clusters 

The COD and ICSD databases contain a total of 412,738 and 166,831 crystallographic information 

files (CIFs). First, the database is screened for CIFs that fulfill the desired chemical restraints. We 

chose to restrain the structures to have the same number of metal and oxygen atoms as the reported 

structures in a review about POM clusters in solution by N. I. Gumerova and A. Rompel.85 This 

restrained the database to 56 different metal – oxygen compositions, yielding 1281 CIFs in total. A 

full list of metal – oxygen compositions used for this project is shown in Appendix IV. Clusters were 

cut out of the remaining CIFs by creating a 2x2x2 unit cell of the crystal and extracting all clusters of 

atoms that were not bonded to other atoms in the structure. A 2x2x2 unit cell is needed to capture all 

clusters, which are split upon several unit cells. All clusters that did not fulfill the chemical restraints 

(the 56 different metal – oxygen compositions) were removed. Figure 7.1 illustrates an example of a 

cluster that was cut out of a porous framework based on Keggin polyoxoanions, 

K2NaH2[BW12O40]∙12H2O.86 
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Figure 7.1: An example of a cluster fragment from a crystal structure. A) The crystal structure of a 

porous framework based on Keggin polyoxoanions, K2NaH2[BW12O40]∙12H2O,86 and the 

corresponding B) cluster. 

 

This procedure yielded 969 structures, that potentially are polyoxometalate clusters. Be aware that it 

is not guaranteed that the clusters are perfectly cut out of the structure with this routine, which makes 

it important to inspect the results of POMFinder from a chemical point of view. In order to remove 

similar structures, all structures were compared using the Pearson value correlation of simulated PDFs 

of the structures. This process is done iteratively by simulating a PDF of the 1st and 2nd cluster with 

the parameters given in Appendix IV and comparing their absolute Pearson value correlation. The 

Pearson value correlation is a measure from -1 to 1 of how correlated two datasets are, where -1 

represents inverse datasets and 1 represents identical datasets. If the absolute Pearson value 

correlation is higher than 0.99, the 2nd cluster is not included in the database. The 3rd cluster is 

compared to the 1st and 2nd cluster by the same procedure, etc. The value of 0.99 was defined by 

manual inspecting structures, their corresponding PDFs and the Pearson value correlation. Examples 

of 3 structures, their corresponding simulated PDFs and the PDFs Pearson value correlation can be 

seen in Appendix IV. This process was done with all the 926 structures yielding 443 unique structures. 

 

 



 
43 

   

 

Part 2: Simulating data from the POM structures 

For each structure, a number of PDF or SAXS data are simulated, N, with a broad range of 

instrumental parameters using Latin hypercube sampling84 to determine the parameters. Diffpy-CMI 

was used to simulate the datasets.48 The range of simulation parameters of the PDF and SAXS data 

is given in Appendix IV. The PDFs are normalized to have the largest peak at G(r) = 1, and G(r ≤ 1 

Å) = 0 since it is very unlikely to have atomic distances that contribute to the signal in this range of 

the PDF. The SAXS data are normalized to have the largest intensity at I(Q) = 1. Figure 7.2 illustrates 

the ex situ data of 0.05 M ammonium metatungstate hydrate, (NH4)6[H2W12O40]∙H2O, solution before 

and after normalization.  

 

Figure 7.2: Comparison of the experimental dataset of a 0.05 M ammonium metatungstate hydrate, 

(NH4)6[H2W12O40]∙H2O, solution before and after normalization. 

 

Part 3: Training process of POMFinder 

The simulated datasets and their corresponding instrumental parameters are input in a GBDT 

algorithm used to predict the structure. The GBDT algorithm used is XGBoost with default 

parameters except for the learning rate which was set to 0.3 and the early stop criterion of 5 rounds 

without improvement.55 The problem is thereby a 443 class classification problem with 443×N 

simulated datasets. For each structure, 2 random of the N simulated PDFs are set aside during training 

of the model and later used as validation- and test set. The validation set is used to validate when the 

GBDT algorithm has converged.  

   The loss curve (multiclass log loss), for the case where N = 100, is plotted in Appendix IV, which 

shows that the algorithm can predict the training data with 100 % accuracy, while the validation data 

is predicted with a small error. The concluding accuracy of the algorithm can be determined on the 

test set, which is data that the model has not been trained or validated on i.e. comparable to how 

POMFinder can be used for experimental data. When POMFinder is trained on 100 PDFs for each 

structure, the accuracy on the test set is 94.0 %. However, this is based on simulated PDF data, 

whereas the interest is to predict POMs from experimental data, which is more challenging since 
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experimental data can contain noise, background scattering and scattering from other chemical 

species. 

 

7.2 Description of how to use POMFinder 

When POMFinder has been created, it is a very simple tool to use where everything is fully automated 

with no requirement of any knowledge about PDF or ML. As seen in Table 7.2, the scientist simply 

provides a dataset as input to POMFinder and it will return a structure as output. The dataset can 

currently be a X-ray PDF, neutron PDF, electron PDF or a SAXS dataset. The output will be given 

in XYZ format providing the elements and coordinates of all the atoms in the structure. 

 

Table 7.2: Pseudo-code that describes how to use the POMFinder algorithm. 

 

7.3 Characterizing the POM structure from experimental X-ray PDF data by 
screening the COD & ICSD database in a second 

We demonstrate the power of POMFinder on an experimental ex situ dataset of a 0.05 M ammonium 

metatungstate hydrate, (NH4)6[H2W12O40]∙H2O, solution which is known to yield free [H2W12O40]6- 

ions with the 𝛼-Keggin structure.32 Keggin structures, an example is seen in Figure 7.1B, have the 

chemical composition [XM12O40]n-, where X is a tetrahedrally coordinated cationic central atom in 

the middle of the cluster, M is the metal atom of the cluster and n is the negative charge of the cluster. 

Keggin clusters are divided into five rotational isomers, with increasing degree of edge-sharing: 

𝛼, 𝛽, 𝛾, 𝛿 and 𝜀. 

   The input to POMFinder is the normalized PDF. The output is how probable it is that the normalized 

PDF originates from each of the 443 POM structures in our POM database, with a total sum of 100 

%. We decided to investigate the five structures with the highest probability assigned by POMFinder, 

which are most likely to be the right POM structure based on the POMFinder predictions. Figure 7.3 

shows the five best predictions, together with a comparison of the normalized PDF of the 
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experimental dataset and the simulated PDF of the POM structure. The calculated PDF of the first 

three structures is very comparable to the normalized PDF, whereas the last two structures have 

scattering signals up to high r distances, which is not seen in the data. The last two structures are 

therefore concluded to be too large. The three best candidate structures are all fragments from CIF 

files containing the Keggin structure. Some of them are not perfectly cut out though. The first two 

structures represent the 𝛼-Keggin structure, while the third represents the 𝛽-Keggin structure. The 

best candidate structure, Figure 7.3A, is a lacunary Keggin with three out of four triads of the 𝛼-

Keggin structure. This could indicate that the last triad in the structure is dynamic. This is supported 

by the 5th best prediction, which is a fragment built of two lacunary Keggins. The best candidate also 

has a Si atom in the center, which impacts the peak intensity at r = 3.3 Å and r = 3.7 Å. From this 

point, one needs to use chemical intuition to build a proper model to describe the data. In this 

synthesis, hydrogen is the only cation in the reaction, which could be stabilized in the center of the 

cluster. Additionally, the best candidate structures have an overweight of corner-sharing octahedra. 

Therefore, we conclude that the right model for the experimental dataset is [H2W12O40]6- with the 𝛼-

Keggin structure. 
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Figure 7.3: Comparison of the normalized PDF of the 0.05 M ammonium metatungstate solution and the 

calculated PDF of A) a W9SiO34 Keggin-based fragment from the Na2[C(NH2)3]2[((CH3)2Sn(H2O))3(A-𝜶-

SiW9O34)]·10H2O crystal87, B) a W12O36 fragment from the K5(CoW12O40)·20H2O crystal88, C) a W12O36 

fragment from a crystal structure86 of a porous framework based on Keggin polyoxoanions, 

K2NaH2[BW12O40]∙12H2O, D) a W18I3K3O75 fragment from the first crystallographically characterized89 

tungstatoperiodate cluster of the form β*‐[H3W18O56(IO6)]6−, and E) a W18P2O89 fragment from the Dawson 

type POM90 Li6[α-P2W18O62]·28H2O. 

 

POMFinder thereby provides a tool that can predict the metal oxido cluster from a PDF while 

measuring the data, making it an ideal approach for structure characterization during a cluster growth 

reaction or in the early stage of a nucleation process. 

 

7.4 We investigate how POMFinder works by using SHAP values to interpret the 
features 

We have now established that POMFinder is a tool that can predict the POM structure of experimental 

PDFs of simple solutions. Yet, we do not fully understand how POMFinder makes predictions. In 

order to get this understanding, we use SHAP analysis. SHAP is a measure of feature importance, 

which yields information about how the ML algorithm exploits the individual features (Qmin, Qmax, 
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Qdamp and rrange = 0 – 10 Å) to make its prediction. The amplitude of the SHAP value can be interpreted 

as how important the feature is or how large a difference it makes to the predictions. The sign of the 

SHAP value tells if the feature is confirming or disqualifying the specific structure as a match to the 

dataset, or why the feature is important. In this project we only analyse the amplitude of the SHAP 

value. Figure 7.4A shows a SHAP analysis of the simulated PDF of the 𝛼-Keggin clusters. The two 

most important features are the G(r) value at r = 6.0 Å and r = 3.6 Å. Figure 7.4B shows a comparison 

of the SHAP values with the simulated PDF. The highest SHAP values, thereby the most important 

features, are at G(r) values corresponding to the 1st and 2nd metal – metal shell distances. Therefore, 

we conclude that the ML algorithm predominantly bases its predictions on the intensities of the PDF 

peaks describing the 1st and 2nd metal – metal shell which is the dominant peaks in the PDF because 

W scatters significantly more than O. The model thereby bases its predictions according to the 

scattering theory outlined in Chapter 2. 

 

Figure 7.4: A) SHAP summary plot of the A) 𝜶-Keggin cluster. B) Comparison of the SHAP values and the 

simulated PDF for the 𝜶-Keggin. 
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7.5 Demonstrating that the POMFinder framework can easily be upscaled to 
include data from other techniques 

We have now established that POMFinder does base its prediction on scattering theory learned from 

98 X-ray PDFs on each POM structure in our database, all with different Qmin, Qmax and Qdamp 

parameters. It is interesting to investigate how many PDFs are needed for it to learn the scattering 

theory and make accurate predictions. Figure 7.5 shows POMFinder’s performance on the test set 

when POMFinder is trained on 2, 3, 5, 8 and 98 PDFs per POM structure. The trend is clear: The 

performance of POMFinder increases when it is trained on more data. 

 

 

Figure 7.5: The performance of the model trained with various amounts of X-ray PDFs per structure. Appendix 

IV shows the mean and standard deviation based on five iterations where the model has been trained on 

different simulated PDFs and predictions have been done on the same test set.  

 

It has previously been shown that combined modelling of data from multiple scattering techniques 

can provide more robust results than the modelling of the data from individual scattering 

techniques.33, 48, 51, 73, 74, 77 However, it is a cumbersome process to do combined modelling of data 

from multiple scattering techniques and it can be difficult to weigh the contribution from each 

dataset.33, 48, 77 ML provides a unique framework, which weights the datasets automatically. 

Furthermore, it is extremely easy to transform an ML algorithm from handling one dataset to another. 

We demonstrate the flexibility of POMFinder by replacing the X-ray PDF (xPDF) data with neutron 

PDF (nPDF), electron PDF (ePDF), X-ray SAXS (SAXS), a combination of xPDF/SAXS and a 

combination of xPDF/SAXS/nPDF. The simulation parameters for the SAXS data are given in 

Appendix IV. The simulation parameters for the nPDF and ePDF data are the same as for the xPDF 

data given in Appendix IV. 

   Figure 7.6 shows the performance of POMFinder when using various amounts of data as well as 

changing the scattering technique the data is from. Generally, POMFinder has a comparable 
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performance when trained on xPDF, nPDF and ePDF data. The performance of POMFinder based on 

PDF or SAXS data cannot be compared, since it will be related to the range of noise included in the 

simulated datasets. With the given parameters in this study, Appendix IV, POMFinder is comparable 

in performance when it is trained on PDF and SAXS data. However, we can conclude that when 

combining information from both PDF and SAXS experiments, the performance increases. This 

example shows the flexibility of the POMFinder and demonstrates the power of combined modelling.  

 

 

Figure 7.6: The performance of the model trained with various simulated datasets and different amounts of 

datasets per structure. Appendix IV shows the mean and standard deviation based on five iterations where the 

model has been trained on different simulated PDFs and predictions have been done on the same test set.  
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8 Concluding remarks 

I have in this Master Thesis described how TS with PDF analysis and SAXS data are powerful 

techniques to characterise the atomic structure of nanoclusters. The measurements can be done in 

seconds allowing studies of cluster growth and nucleation mechanisms, which are important to 

understand in order to make new and functional materials. We have demonstrated that by using 

conventional PDF and SAXS analysis using minimization approaches as least-square refinements, it 

is possible to follow the cluster growth from [Bi6O8] to [Bi38O45] when [Bi6O5(OH)3(NO3)5]·3H2O 

crystals are dissolved in DMSO. 

   However, this modelling approach is restricted to expert users, and it is a time-consuming way to 

model the data. We have demonstrated that automated modelling using least-squares minimization 

approaches can extend the information that is normally gained from conventional modelling. In this 

Thesis, it was used to identify the intermediate species as the [Bi22O26] cluster. Furthermore, I have 

demonstrated that combined PDF and SAXS modelling provides more robust results than analysis of 

the individual techniques. However, these methods are highly dependent on expert users given the 

right parameters to the algorithms and combined modelling of PDF and SAXS data must be weighted 

appropriately.  

   We have also shown that both problems can be solved by replacing the least-squares minimization 

approach with ML. ML provides a unique framework, which can predict structural models instantly 

and it weights datasets from multiple techniques automatically. We have shown this by training an 

algorithm to predict the POM structure from a PDF in 94 % of the cases in the test set, while it can 

predict the cluster structure in 97 % of the cases if it is trained on both PDF and SAXS data. We have 

furthermore presented Machine Learning based Motif Extractor (ML-MotEx) that can identify the 

important structural motif in a PDF pattern. These methods are some of the first to automate the 

analysis of scattering data using ML. The ML methods used here are tree-based algorithms, which 

are intuitive and easy to use. However, I imagine that more complicated neural networks as generative 

models will outperform the tree-based methods in the future. Generative models can both predict the 

chemical structure that matches a dataset but they are also able to map a space of chemical structures 

including properties and synthesis. ML using generative models can consequently be the tool that 

combines synthesis, structure and properties in a single 2D/3D map, which can freely be drawn from 

to do synthesis by design. 
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Appendix I: Supplementary Information for Chapter 2 

Simulation details of Q-space and r-space data of the [Bi38O45] cluster 
The Q-space data has been simulated in CrystalDiffract91 using a wavelength of 0.20717 Å and a 1.2 

nm sized [(Bi38O45(NO3)24((CH3)2SO)26)((CH3)2SO)4)((Bi38O45(NO3)24((CH3)2SO)24)((CH3)2SO)4] 

crystal, mimicking the size of a single cluster.92 Unfortunately, CrystalDiffract91 cannot simulate data 

to higher Qrange than shown in the plot. The r-space data has been simulated in Diffpy-CMI48 using a 

[Bi38O45] cluster and the following parameters: Qmin = 0 Å-1, Qmax = 9999 Å-1, Qdamp = 0.01 Å-1, ADP 

= 0.03 Å2. Qdamp is a Gaussian dampened function which models the instrumental dampening.48 

 

Details of transformation from Q-space to r-space data of the [Bi38O45] cluster 
The data was transformed to r-space from Q-space using PDFgetX393 using the following parameters: 

Rpoly = 0.9 Å, Qmax, instrument = 17.5 Å-1, Qmax = 17 Å-1, Qmin = 0.7 Å-1 and a chemical composition of 

Bi38O45. Qmax, instrument is the highest Q value used in the data to calculate S(Q) and Rpoly is the threshold 

for what data is used to estimate the incoherent scattering in the data with a polynomial function.93 

 
Simulation details of total scattering, PDF and SAXS data of the [Bi18O36] cluster and 

the [Bi22O38] cluster 
The total scattering data has been simulated in CrystalDiffract91 using a wavelength of 0.20717 Å and 

a 1.2 nm sized [Bi18O18(OSiMe3)18]⋅2C7H8 crystal and a 1.2 nm sized [Bi22O26(OSiMe2tBu)14] crystal, 

mimicking the size of single clusters. Unfortunately, CrystalDiffract91 cannot simulate data to higher 

Qrange than shown in the plot. The PDF data was simulated using Diffpy-CMI48 with the following 

parameters: Qmin = 0.7 Å-1, Qmax = 20 Å-1, Qdamp = 0.03 Å-1, ADP = 0.3 Å2. The SAXS data were 

simulated with Diffpy-CMI48 using a constant background to describe the Compton scattering of 1.5. 

Both the PDF and SAXS data have been calculated with the Debye equation using simulation 

parameters mimicking experimental data. 
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Appendix II: Supplementary Information for Chapter 53 

Bismuth oxido cluster synthesis 
Synthesis of the bismuth oxido cluster [Bi6O5(OH)3(NO3)5]·3H2O was carried out according to a 

literature procedure under modified conditions.94 Bi(NO3)3·5H2O (m = 50 g, n = 0.1 mol) was 

dissolved in aqueous nitric acid (c = 0.9 M, V = 50 mL) followed by the addition of deionized water 

(V = 1000 mL) to give a colorless reaction mixture. After stirring for 24 h, the colorless solid was 

separated by filtration and washed with aqueous nitric acid (c = 0.63 M, V = 100 mL) and deionized 

water (V = 600 mL). After drying of the washed solid in vacuo (p = 10–3 mbar, T = 60 °C, t = 1 h), 

the bismuth oxido cluster [Bi6O5(OH)3(NO3)5]·3H2O was obtained as a colorless powder (m = 21 g, 

n = 12 mmol, η = 70 % based on bismuth in Bi(NO3)3·5H2O). 

Synthesis of the bismuth oxido cluster [Bi6O4(OH)4(NO3)6(H2O)2]·H2O was carried out according to 

a literature procedure under modified conditions.15 Bi(NO3)3·5H2O (m = 4.85 g, n = 0.01 mol) was 

dissolved in aqueous nitric acid (c = 1 M, V = 100 mL) followed by the dropwise addition of aqueous 

NaOH (c = 0.1 M, V = 100 mL). The resulting mixture was stirred under ambient conditions for t = 

0.5 h. Slow diffusion of acetone vapor via the gas phase into the mother liquid gave colorless crystals 

of [Bi6O4(OH)4(NO3)6(H2O)2]·H2O (m = 2.20 g, n = 1.21 mmol, η = 73 % based on bismuth in 

Bi(NO3)3·5H2O). 

 

PDF experiments  
All in situ PDF experiments were conducted at beamline P02.1 at PETRAIII, DESY, Hamburg. Total 

scattering data were collected using the RA-PDF geometry with X-ray wavelength 0.2072 Å. 

For studies of cluster growth, crystalline [Bi6O5(OH)3(NO3)5]·3H2O (m = 65.7 mg) was suspended in 

DMSO (V = 1 mL). The suspension was then transferred to Kapton tubes with an inner diameter of 

1.05 mm, which were mounted at the beamline. Total scattering data were collected with a time 

resolution of t = 1 s while heating the capillary to T = 30 °C – 80 °C with a heating rate of ΔT = 5 

°C·min-1. The time of the measurement was started when the heating was initiated. 

 

 

 
3 This chapter is based on some of the results from Anker et. al., Structural Changes during the Growth of Atomically 

Precise Metal Oxido Nanoclusters from Combined Pair Distribution Function and Small-Angle X-ray Scattering 

Analysis, Angew. Chem. Int. Ed. 2021, 60, 2-12. Which is also included as Appendix V. 
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Additional, ex situ X-ray total scattering measurements were done at beamline P07 at PETRAIII, 

DESY, Hamburg with an X-ray wavelength of 0.1235 Å. [Bi6O5(OH)3(NO3)5]·3H2O (m = 32.85 mg) 

was dissolved in DMSO (V = 0.5 mL) at room temperature. To identify the effect of the cluster 

structure, an additional experiment was done where 32.85 mg of crystalline 

[Bi6O4(OH)4(NO3)6(H2O)2]·H2O was dissolved in 0.5 mL DMSO at room temperature. The samples 

were maintained undisturbed until measurements after t = 2 days, 4 days, and 11 days. Data were 

collected in Kapton tubes at room temperature. All X-ray total scattering data were integrated using 

Fit2D95. PDFs were obtained using PDFgetx393, 96 and modelling was done using DiffPy-CMI.48  

 

SAXS experiments  
The SAXS experiments of cluster growth were done at beamline ID02, ESRF (l = 0.7293 Å) and at 

SWING, SOLEIL (l = 0.7749 Å). The sample preparation and experiments were done as for the 

corresponding PDF experiments. The samples were loaded in 1.05 mm Kapton tubes (ESRF) and 

quartz capillaries (SOLEIL). The data were integrated using beamline specific programs. All data 

were analyzed with Diffpy-CMI,48 which uses SASVIEW modules.50  
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 In situ experiments performed at T = 30–60 °C 

 

Figure S1: A) The in situ X-ray total scattering data obtained during the experiment performed at T = 30–60 

°C plotted as a function of time, which has been background subtracted as seen in Figure S2. Bragg peaks are 

seen in the beginning of the reaction but only diffuse features are seen after dissolution. Normalization of the 

colorbar has been done between the lowest intensity and half of the highest intensity to downscale the effect of 

the peak at Q = 0.34 Å-1. B) The corresponding PDFs are plotted as a function of time. C) The background 

subtracted SAXS data (plotted on a log-normal-log scale) obtained during a similar experiment plotted as a 

function of time. Adapted from Anker et al.33 
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Background subtraction 

 

Figure S2: illustration of how the background signal, a Kapton tube containing DMSO at the relevant 

temperature, is subtracted from the data in order to isolate the scattering pattern from the clusters. Most of 

the signal of the background is from DMSO, why a separate Kapton background subtraction is not done. 

Adapted from Anker et al.33 

 

PDF and SAXS refinement details, end product T = 80 °C 
The [Bi38O45] cluster was obtained by cutting an isolated [Bi38O45] cluster out of crystalline 

[Bi38O45(NO3)20(DMSO)28](NO3)4·4DMSO.15  

Table S1: The refinement details the fit of the [Bi38O45] cluster structure to the background subtracted PDF 

data obtained at the end of the experiment, t = 70 min, at T = 80 °C. For all fits in the paper, the Biso value for 

oxygen has been fixed to 2 Å2. Adapted from Anker et al.33 

Initial 

scaling 

factor 

0.5 Lower 

boundary 

0.0 Higher 

boundary 

1.0 Refined 

Value 

0.8 

Isotropic 

ADP – Bi 

(Å2) 

1.5 Lower 

boundary 

0.0 Higher 

boundary 

4.0 Refined 

Value 

1.5 

Isotropic 

expansion 

1.0 Lower 

boundary 

−∞ Higher 

boundary 

∞ Refined 

Value 

1.0 
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Table S2: The refinement details the fit of the [Bi38O45] cluster structure to background subtracted SAXS data 

obtained at the end of the experiment, t = 37 min, at T = 80 °C. Adapted from Anker et al.33 

Initial 

scaling 

factor 

1•10-5 Lower 

boundary 

−∞ Higher 

boundary 

∞ Refined 

Value 

2.16•10-6 

Constant 

background 

0.1 Lower 

boundary 

−∞ Higher 

boundary 

∞ Refined 

Value 

2.1 

 

Sequential SAXS form factor analysis 
The SAXS form factor analysis was done in Diffpy-CMI,48 which uses SASVIEW modules.50 

Spherical particles with a lognormal polydispersity were assumed and fitted with a SAXS form factor 

in the range Q = 0.1–1.2 Å-1. Sequential refinement was done reversely, starting with the last frame. 

The parameters used are given in Table S3. The uncertainty of the radius and polydispersity were 

estimated in SASVIEW50 using a weight on the data points of the absolute value of the intensity. This 

might lead to uncertainties of the fitted parameters that are too small, but they will be independent of 

the scaling of the intensity. 

 

Figure S3: The size and dispersity of the clusters, plotted as a function of reaction time from each of the in situ 

experiments at T = 30–80 °C. The values are obtained from a SAXS form factor analysis using a spherical 

model with a lognormal size distribution. The data analyzed here were obtained at beamline ID02, ESRF. 

Adapted from Anker et al.33 
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Table S3: The fitting parameters used for sequential SAXS form factor analysis. Adapted from Anker et al.33 

Initial scaling 

factor 

104 Lower 

boundary 

0 Higher 

boundary 

∞ 

Initial constant 

background 

1.0 Lower 

boundary 

0.0 Higher 

boundary 

10.0 

Initial radius 7 Å Lower 

boundary 

Radius from last 

frame -1 Å 

Higher 

boundary 

Radius from last 

frame +1 Å 

Initial radius 

dispersity 

1•10-2 

Å 

Lower 

boundary 

Radius dispersity 

from last frame -0.2 

Å 

Higher 

boundary 

Radius dispersity 

from last frame +0.2 

Å 

 

 

Figure S4: The SAXS formfactor analysis using a spherical model with a lognormal size distribution at T = 80 

°C after A) t = 4 min of reaction. (Radius = 6.6 ± 0.4 Å, polydispersity = 0.10 ± 0.08 Å), B) t = 15 min of reaction. 

(Radius = 6.7 ± 0.4 Å, polydispersity = 0.09 ± 0.08 Å), C) t = 25 min of reaction (Radius = 6.8 ± 0.4 Å, 

polydispersity = 0.08 ± 0.09 Å). The modelling were done in SASVIEW.50 Adapted from Anker et al.33 

 

Automated intermediate extractor 
Test structures were constructed by removing Bi atoms iteratively from the outer shell of the cluster, 

and all oxygen atoms which were not bonded to at least a single Bi atom were removed. The longest 

allowed bond length was set to 2.5 Å, which is the longest Bi···O distance observed in the 

experimental PDFs. The cluster structure giving the best fit was identified and used as the starting-

point for the second last frame in the series, where the same procedure was performed. This procedure 

was used for all frames in in situ experiments with T = 30–80 °C. To speed up the calculations, the 
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maximum number of Bi atoms removed for each time step in the series was limited to 8, and the 

number of Bi atoms to be added to 3. 

 

 

Figure S5: The number of bismuth atoms in the best possible structure of the frame during the in situ 

experiment is plotted versus reaction time from the T = 40 °C and T = 50 °C in situ PDF & SAXS measurement. 

Adapted from Anker et al.33 

 

Comparison of a two-phase model, [Bi22O26] and [Bi38O45], with the cluster found 
from automated intermediate extractor 

Table S4: The fitting parameters used to make the fits in figure 8 of the [Bi32O44] cluster. The [Bi32O44] cluster 

is fitted to the background subtracted PDF experiment measured at T = 80 °C at t = 52 min. Adapted from 

Anker et al.33 

[Bi32O44] 

cluster 

Structure from Permutation 2 phases – [Bi22O26] + [Bi38O45] 

 Debye 

PDF 

Debye 

SAXS 

Formfactor  Debye 

PDF 

Debye 

SAXS 

Formfactor  

Scale factor 1 0.91 

[Bi32O44] 

- - 0.50 

[Bi38O45] 

- - 

Scale factor 2 - - - 0.30 

[Bi22O26] 

- - 

ADP (Bi) (Å2) 1.28 - - 1.22 - - 

ADP (O) (Å2) 2.00 - - 2.00 - - 

Zoomscale 1 1.01 - - 1.00 - - 

Zoomscale 2 - - - 1.02 - - 

Iqscale 1 - 3.15•10-6 

[Bi32O44] 

2.25•102 

[Bi32O44] 

- 1.59•10-6 

[Bi38O45] 

1.93•102 

[Bi38O45] 

Iqscale 2 - - - - 1.49•10-6 

[Bi22O26] 

3.87•101 

[Bi22O26] 
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Background - 1.88 1.98 - 1.92 1. 95 

Radius 1 (Å) - - 6.5 ± 0.3 - - 7 ± 1 

Radius 2 (Å) - - - - - 5 ± 3 

Dispersity 1 

(Å) 

- - 9•10-2 ± 

9•10-2 

- - 0 ± 0 

Dispersity 2 

(Å) 

- - - - - 0.2 ± 0.2 

Rwp (%) 15.26 1.84 1.26 15.28 1.68 1.21 

 

Table S5: The fitting parameters used to make the fits in figure 8 of the [Bi28O38] cluster. The [Bi28O38] cluster 

is fitted to the background subtracted PDF experiment measured at T = 80 °C at t = 15 min. Adapted from 

Anker et al.33 

[Bi28O38] 

cluster 

Structure from Permutation 2 phases - [Bi22O26] + [Bi38O45] 

 Debye 

PDF 

Debye 

SAXS 

Formfactor  Debye 

PDF 

Debye 

SAXS 

Formfactor  

Scale factor 1 0.93 

[Bi28O38] 

- - 0.30 

[Bi38O45] 

- - 

Scale factor 2 - - - 0.534 

[Bi22O26] 

- - 

ADP (Bi) (Å2) 1.39 - - 1.19 - - 

ADP (O) (Å2) 2.00 - - 2.00 - - 

Zoomscale 1 1.01 - - 1.01 - - 

Zoomscale 2 - - - 1.00 - - 

Iqscale 1 - 2.64•10-6 

[Bi28O38] 

3.22•102 

[Bi28O38] 

- 1.70•10-6 

[Bi38O45] 

3.00•102 

[Bi38O45] 

Iqscale 2 - - - - 3.49•10-6 

[Bi22O26] 

4.21•101 

[Bi22O26] 

Background - 1.72 2.85 - 2.70 2.77 

Radius 1 (Å) - - 6.5 ± 0.3 - - 7 ± 1 
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Radius 2 (Å) - - - - - 4 ± 4 

Dispersity 1 

(Å) 

- - 7•10-2 ± 

9•10-2 

- - 0 ± 0 

Dispersity 2 

(Å) 

- - - - - 0 ± 0 

Rwp (%) 16.94 2.90 2.16 16.65 2.75 2.10 

 

Table S6: The fitting parameters used to make the fits in figure 8 of the [Bi25O36] cluster. The [Bi25O36] cluster 

is fitted to the background subtracted PDF experiment measured at T = 30 °C at t = 152 min. Adapted from 

Anker et al.33 

[Bi25O36] 

cluster 

Structure from Permutation 2 phases - [Bi22O26] + [Bi38O45] 

 Debye 

PDF 

Debye 

SAXS 

Formfactor  Debye 

PDF 

Debye 

SAXS 

Formfactor  

Scale factor 1 0.83 

[Bi25O36] 

- - 0.06 

[Bi38O45] 

- - 

Scale factor 2 - - - 0.74 

[Bi22O26] 

- - 

ADP (Bi) (Å2) 1.38 - - 1.01 - - 

ADP (O) (Å2) 2.00 - - 2.00 - - 

Zoomscale 1 1.00 - - 1.01 - - 

Zoomscale 2 - - - 1.00 - - 

Iqscale 1 - 7.97•10-6 

[Bi25O36] 

3.95•102 

[Bi25O36] 

- 2.24•10-6 

[Bi38O45] 

2.21•102 

[Bi38O45] 

Iqscale 2 - - - - 3.55 •10-6 

[Bi22O26] 

1.84•102 

[Bi22O26] 

Background - 2.50 3.16 - 3.10 3.13 

Radius 1 (Å) - - 6.1 ± 0.3 - - 7 ± 1 

Radius 2 (Å) - - - - - 5 ± 2 

Dispersity 1 

(Å) 

- - 1.40 ± 

0.07 

- - 0 ± 0 
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Dispersity 2 

(Å) 

- - - - - 0.2 ± 0.2 

Rwp (%) 32.87 4.60 1.42 30.16 1.96 1.39 

Table S7: The fitting parameters used to make the fits in figure 8 of the [Bi20O33] cluster. The [Bi20O33] cluster 

is fitted to the background subtracted PDF experiment measured at T = 30 °C at t = 103 min. Adapted from 

Anker et al.33 

 

[Bi20O33] 

cluster 

Structure from Permutation 2 phases - [Bi22O26] + [Bi38O45] 

 Debye 

PDF 

Debye 

SAXS 

Formfactor  Debye 

PDF 

Debye 

SAXS 

Formfactor  

Scale factor 1 0.87 

[Bi20O33] 

- - 0.08 

[Bi38O45] 

- - 

Scale factor 2 - - - 0.698 

[Bi22O26] 

- - 

ADP (Bi) (Å2) 1.30 - - 0.72 - - 

ADP (O) (Å2) 2.00 - - 2.00 - - 

Zoomscale 1 0.99 - - 0.95 - - 

Zoomscale 2 - - - 1.00 - - 

Iqscale 1 - 1.19•10-5 

[Bi20O33] 

4.09•102 

[Bi20O33] 

- 2.22•10-6 

[Bi38O45] 

2.46•102 

[Bi38O45] 

Iqscale 2 - - - - 3.94•10-6 

[Bi22O26] 

1.74•102 

[Bi22O26] 

Background - 2.03 3.27 - 3.19 3. 24 

Radius 1 (Å) - - 6.1 ± 0.3 - - 7 ± 1 

Radius 2 (Å) - - - - - 5 ± 2 

Dispersity 1 

(Å) 

- - 1.30 ± 

0.07 

- - 0 ± 0 

Dispersity 2 

(Å) 

- - - - - 0.2 ± 0.2 

Rwp (%) 31.82 8.30 1.61 26.97 2.17 1.57 
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Comparison of a two-phase model using the [Bi22O26] cluster and the [Bi38O45] 
cluster, with the one-phase model of the two clusters 

 

Figure S6: The datasets obtained at different stages of the reaction plotted with the simulated data of the 

[Bi22O26] and [Bi38O45] cluster. The dataset from the sample left at room temperature for 275 days is very 

similar to the [Bi38O45] cluster, while the dataset for the sample heated to T = 80 °C for t = 16 minutes is similar 

to a combination of both [Bi22O26] and [Bi38O45], with [Bi22O26] as the majority species. Adapted from Anker et 

al.33 

 

 

Figure S7: The models including a combination of both the [Bi22O26] and [Bi38O45] structures fit the in situ 

SAXS data obtained at T = 80 °C after t = 16 and 37 min better than either the individual [Bi22O26] and [Bi38O45] 

clusters. Adapted from Anker et al.33 
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Sequential two-phase refinement 

 

Figure S8: Phase fraction of the [Bi22O26] and [Bi38O45] structures during the in situ experiments is plotted 

versus time of the reaction for the T = 50 °C and T = 40 °C in situ PDF & SAXS measurement and by complex 

modelling, which shows that the [Bi22O26] cluster is growing to the [Bi38O45] cluster. Blue: SAXS, Red: PDF, 

Green: Complex Modelling. Adapted from Anker et al.33 

 

Cluster growth from the crystalline [Bi6O4(OH)4(NO3)6(H2O)2]·(H2O) and 
[Bi6O5(OH)3(NO3)5]·(H2O)3 dissolved in DMSO 

 

 

Figure S9: The two-phase refinements with the [Bi22O26] and [Bi38O45] cluster of the A–C) 

[Bi6O5(OH)3(NO3)5]·(H2O)3 crystal mixed with DMSO and left undisturbed for t = 2-, 4- and 11 days at T = 25 

°C. D–F) the [Bi6O4(OH)4(NO3)6(H2O)2]·(H2O) crystal mixed with DMSO and left undisturbed for t = 2-, 4- and 

11 days at T = 25 °C. Adapted from Anker et al.33 
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Appendix III: Supplementary Information for Chapter 6 

Goodness-of-fit parameter Rwp value 
The goodness–of–fit parameter is the value that is minimized during a refinement procedure. The Rwp 

value is the most common goodness-of-fit parameter used in PDF analysis. It is given by 

Equation S1 𝑅&' = #
∑ [𝐺()*(𝑟+) − 𝐺,-.,(𝑟+ , 𝑃)]/0
+12

∑ 𝐺()*(𝑟+)/0
+12

.
2
/3

∗ 100	% 
 

 

Where Gobs and Gcalc are the observed and calculated PDFs, P is the parameters that are refined in the 

model. 

 

Simulation parameters for the β-Bi2O3 crystal 

Table S8: Simulated parameters for all the examples provided in the paper. 

 2x2x3 unit 

cells of β-

Bi2O3 

r-range (Å) 2 – 15 

r-step 0.01 

Qmin (Å-1) 0.7 

Qmax (Å-1) 15.5 

Qdamp (Å-1) 0.04 

ADP (Å2) 1.35 

 

Fitting variables for ML-MotEx 

Table S9: Instrumental- and fitting parameters for the 4 examples provided in the paper. The initial guesses of 

the parameters are written inside the parentheses, while the fitting range is written outside the parentheses.  

 β-Bi2O3 

PDF  

r-range (Å) 2 – 15 

r-step 0.01 

Qmin (Å-1) 0.7 

Qmax (Å-1) 15.5 
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Qdamp (Å-1) 0.04 

Qbroad (Å-1) - 

Oxygen threshold 

(Å) 

2.5 

PDF scaling factor 0 – 1.5 (0.9) 

Delta2 (Å2) - 

ADPC/Mo/w/Bi (Å2) 0.01 – 3 (1.35) 

ADPO (Å2) 2 

Isotropic expansion 0.98 – 1.02 

(1.00) 

SAXS  

Q-range (Å-1) 0.09 – 2.7 

Rmax (Å) 100 Å 

SAXS scaling factor 0 – 10-5 (4*10-6) 

Background 0 – 4 (2.4) 

 

Cookie-Cutter algorithm 

 

Figure S10: 4 examples of shapes that can be cut out with the cookie-cutter tool. A) A box with atoms 0.1 Å 

apart. All atoms outside B) the sphere, C) the cube, D) the ellipsoid, E) the disk, have been removed. 

 

A B C

D E
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Table S10: Parameter thresholds for sampling geometries with spherical-, cubic-, ellipsoidal- or a disk shape. 

The parameters are sampled from a uniform distribution in this range. 

Sphere  

Radius (Å) 2 – 12 

Cube  

Height and length (Å) 3 – 16 

Ellipsoid  

Radius1, Radius2, Radius3 (Å) 0 – 20 

Disk  

Radius (Å) 0 – 20 

Height (Å) 0 – 20 

Angle (o) 0 – 360 

 

 

Sphericity 
The sphericity, Ψ, of an object was defined in 1935 by Wadell and measures how spherical a geometry 

is. It can be calculated with the following formula:97 

Equation S2 Ψ =
𝜋
%
J(6𝑉K)

&
J

𝐴K
  

 

Where Vp is the volume of the object and Ap is the surface area of the object. 
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Analysis of the PDF fits of data from the [Bi38O45] cluster 

 

Figure S11: Overview of the Rwp values of the PDF fits versus important structural parameters. A) The Rwp 

values versus the volume of the structure, B) The Rwp value versus radius1 and radius2 in the ellipsoidal shaped 

structures and C) The Rwp value versus radius1 and radius3 in the ellipsoidal shaped structures. 

 

Fitting details of the fit using the best model found with the brute-force approach 
and the best model found with the ML-MotEx approach 

 
Example system Brute-Force ML-MotEx 
r-range (Å) 2 – 15 2 – 15 

Scale 0.89 0.86 

ADPBi (Å2) 1.71 1.71 

ADPO (Å2) Fixed to 1 Fixed to 1 

Isotropic expansion 0.98 0.98 

Table S11: Refinement details the best fitting cluster extracted with brute-force modelling and ML-MotEx to 

the background subtracted from the [Bi38O45] cluster.  

 

 

 

 

 

 

 

 

 

A B C
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Fits of the PDF and SAXS data using the [Bi38O45] cluster as model 

 

Figure S12: Fit of the A) PDF data, B) SAXS data, using the C) [Bi38O45] cluster. 

 

Example system PDF SAXS 
r-range (Å) 2 – 15 - 

Scale 0 – 10 (0.91) - 

ADPBi (Å2) 0 – 4 (1.3) - 

ADPO (Å2) Fixed to 1 - 

Isotropic expansion 0.95 – 1.05 (1.01) - 

Q-range (Å-1) - 0.09 – 1.2 

Rmax (Å) - 100 

SAXS scaling factor - 0 – ∞ (4.1∙10-6) 

Background - 0 – ∞ (2.4) 

Table S12: Refinement details the fit of the [Bi38O45] cluster to the background subtracted PDF and SAXS data 

from the [Bi38O45] cluster. The initial guesses of the parameters are written inside the parentheses, while the 

fitting range is written outside the parentheses.  
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ML-MotEx does not perform well on SAXS data due to the missing atomistic 
information compared to PDF data 

 

Figure S13: A) The [Bi38O45] cluster B) The β-Bi2O3 structure with highlighted polyhedra in red and green, 

where the green corresponds to the [Bi38O45] cluster. Some polyhedra are drawn as balls and stick instead, to 

enhance visibility. C) Comparison of the experimental SAXS of the [Bi38O45] cluster and simulated data of a 

2x2x3 unit cell of β-Bi2O3. The simulation parameters mimic typical values of a PDF dataset and can be seen in 

Table S8. 

 

 

Figure S14: Overview of the Rwp values of the SAXS fits versus important structural parameters. A) The Rwp 

values versus the number of bismuth atoms present in the structure, B) The Rwp value versus the shape and 
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sphericity of the structures and C) The Rwp value versus the spherical radius of the structures made with a 

spherical shape. 

 

Figure S15: Overview of the Rwp values of the PDF fits + Rwp values of the SAXS fits versus important structural 

parameters. A) The Rwp values versus the number of bismuth atoms present in the structure, B) The Rwp value 

versus the shape and sphericity of the structures and C) The Rwp value versus the spherical radius of the 

structures made with a spherical shape. 
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Figure S16: Overview of the Rwp values of the SAXS fits versus important structural parameters. A) The Rwp 

values versus the volume of the structure, B) The Rwp value versus radius1 and radius2 in the ellipsoidal shaped 

structures and C) The Rwp value versus radius1 and radius3 in the ellipsoidal shaped structures. 

 

 

Figure S17: Overview of the Rwp values of the PDF fits + the Rwp values of the SAXS fits versus important 

structural parameters. A) The Rwp values versus the volume of the structure, B) The Rwp value versus radius1 

and radius2 in the ellipsoidal shaped structures and C) The Rwp value versus radius1 and radius3 in the 

ellipsoidal shaped structures. 

 

A B C

A B C
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Figure S18: SHAP summary plot from ML-MotEx utilized on PDF data from the [Bi38O45] cluster. 
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Figure S19: SHAP summary plot from ML-MotEx utilized on SAXS data from the [Bi38O45] cluster. 
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Figure S20: SHAP summary plot from ML-MotEx utilized on combined PDF and SAXS data from the [Bi38O45] 

cluster. 

 

While ML-MotEx carves out a physical closed-shell structure (yellow atoms) without ‘dangling’ 

atoms when it has been trained on PDF data, this is not the case when it is trained on SAXS data. We 

argue that ML-MotEx is a better approach for PDF modelling since PDF contains information about 

the atomic arrangement, while the SAXS data is better suited to understand size and shape.  
 



 

 

 

82 

 

 

Figure S21: Visualisation of the most preferred atoms (yellow) to keep in the structure by ML-MotEx and the 

atoms that should be removed (purple).  

 

In order to understand how ML-MotEx orders the importance of the atoms to yield a low Rwp of the 

fit, the atoms were ordered with respect to their SHAP value. The first atom was the one with the 

lowest SHAP value (pushes the Rwp value down) and the last atom was the atom with the highest 

SHAP value (pushes the Rwp value up). Afterwards, they were iteratively included in the model with 

the one with the lowest SHAP value first and fitted to the data. The Rwp values of the fits from this 

process is illustrated in Figure S21 for the SAXS and PDF data individually as well as combined. 

From Figure S21, the best fitting model for the PDF Rwp value is when the 37 atoms with the lowest 

SHAP values are kept in the model and the rest of the atoms are removed. This model is shown and 

fitted to the PDF and SAXS data in Figure S23. Fitting details are given in Table S13. The same 

routine is made for SAXS data illustrated in Figure S24 and Table S14 and for combined analysis of 

PDF and SAXS data, where the Rwp values are summed, in Figure S25 and Table S15. The results 

show that the PDF want to keep an ‘closed shell physical structure’, while the SAXS data just generate 

a structure that has the right size and shape that fits the SAXS data well. We therefore conclude that 

the ML-MotEx approach is better suited for techniques as PDF with atomistic information compared 

to SAXS data with information about the particle morphology. 



 
83 

   

 

 

Figure S22: The Rwp values of the fits made by including various numbers of atoms in the structure starting 

from the atom with the lowest SHAP value (pushes the Rwp value most down) after ML-MotEx has been applied 

on the PDF-, SAXS- and combined dataset. 

 

Best fitting structure found with ML-MotEx on the PDF data from the [Bi38O45] cluster 

 

Figure S23: Fits of the cut out of the 37 most preferred bismuth atoms of the PDF model, A) PDF fit, B) SAXS 

fit, C) The structure of the 37 most preferred Bi atoms and all oxygen atoms within 2.5 Å to a Bi atom.  

 

Example system PDF SAXS 
r-range (Å) 2 – 15 - 

Scale 0 – 10 (0.86) - 

ADPBi (Å2) 0 – 4 (1.7) - 

ADPO (Å2) Fixed to 1 - 

Isotropic expansion 0.95 – 1.05 (0.98) - 

Q-range (Å-1) - 0.09 – 1.2 

Rmax (Å) - 100 

SAXS scaling factor - 0 – ∞ (4.3∙10-6) 

Background - 0 – ∞ (2.8) 

Table S13: Refinement details the fit of the [Bi37O85] cluster extracted with ML-MotEx with the use of PDF 

data to the background subtracted PDF and SAXS data from the [Bi38O45] cluster. The initial guesses of the 

parameters are written inside the parentheses, while the fitting range is written outside the parentheses.  
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Best fitting structure found with ML-MotEx on the SAXS data from the [Bi38O45] cluster 

 

Figure S24: Fits of the cut out of the 12 most preferred bismuth atoms of the SAXS model, A) PDF fit, B) SAXS 

fit, C) The structure of the 12 most preferred Bi atoms and all oxygen atoms within 2.5 Å to a Bi atom. 

 

Example system PDF SAXS 
r-range (Å) 2 – 15 - 

Scale 0 – 10 (1.80) - 

ADPBi (Å2) 0 – 4 (1.8) - 

ADPO (Å2) Fixed to 1 - 

Isotropic expansion 0.95 – 1.05 (0.99) - 

Q-range (Å-1) - 0.09 – 1.2 

Rmax (Å) - 100 

SAXS scaling factor - 0 – ∞ (3.3∙10-6) 

Background - 0 – ∞ (0.0) 

Table S14: Refinement details the fit of the [Bi12O40] cluster extracted with ML-MotEx with the use of SAXS 

data to the background subtracted PDF and SAXS data from the [Bi38O45] cluster. The initial guesses of the 

parameters are written inside the parentheses, while the fitting range is written outside the parentheses.  
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Best fitting structure found with ML-MotEx on the combined PDF and SAXS data from the [Bi38O45] 

cluster 

 

Figure S25: Fits of the cut out of the most preferred 20 bismuth atoms of the combined PDF+SAXS model, A) 

PDF fit, B) SAXS fit, C) The structure of the 20 most preferred Bi atoms and all oxygen atoms within 2.5 Å to 

a Bi atom. 

 

Example system PDF SAXS 
r-range (Å) 2 – 15 - 

Scale 0 – 10 (1.29) - 

ADPBi (Å2) 0 – 4 (1.9) - 

ADPO (Å2) Fixed to 1 - 

Isotropic expansion 0.95 – 1.05 (0.97) - 

Q-range (Å-1) - 0.09 – 1.2 

Rmax (Å) - 100 

SAXS scaling factor - 0 – ∞ (1.3∙10-6) 

Background - 0 – ∞ (1.6) 

Table S15: Refinement details the fit of the [Bi20O56] cluster extracted with ML-MotEx with the use of combined 

PDF and SAXS data to the background subtracted PDF and SAXS data from the [Bi38O45] cluster. The initial 

guesses of the parameters are written inside the parentheses, while the fitting range is written outside the 

parentheses. 
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Appendix IV: Supplementary Information for Chapter 7 

Table S16: The number of metal/oxygen atoms in known POM structures in solution,85 which were used as a 

chemical restrain of which clusters were included in the database. M is all transition metals, post-transition 

metals and lanthanoids. 

MO4 M2O7 M3O9 M3O10 M4O12 M4O13 M5O14

 M5O15 M10O28 MO2 M14O42 M15O36 MO10 MO7

 M2O10 M6O19 M7O22 M24O72 M7O24 M8O26

 M8O28 M36O112 M18O56 M2O5 M2O4 MO3

 M8O27 M10O34 M5O23 M6O26 M12O40 M11O39

 M9O34 M18O62 M9O33 M19O67 M9O37 M6O18

 M10O38 M6O20 M10O32 M11O38 M11O40 M5O19

 M6O22 M22O74 M34O116 M10O36 M19O69 M20O70

 M21O71 M12O42 M17O61 M15O56 M12O48 M48O184  

 

 

Table S17: Instrumental parameters for PDFs used to determine if two clusters are similar. The isotropic 

atomic displacement parameters (ADP) have been set high to emphasize the general trends in the PDF and not 

the disorder. 

RRange = 0 – 30 Å 

Rstep = 0.1 Å 

Qmin = 0.2 Å-1 

Qmax = 30 Å-1 

Qdamp = 0.01 Å-1 

ADP = 1 Å2 
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Figure S26: Three examples of clusters with their corresponding simulated PDFs and the PDFs Pearson 

correlation value. Simulation parameters are given in Table S17. 

 

Table S18: Parameter range for the simulated datasets. The simulated parameters were determined using Latin 

hypercube sampling.84 The parameters are further described in Diffpy-CMI.48  

PDF SAXS 

RRange = 0 – 10 Å QRange = 0 – 2 Å-1 

Rstep = 0.1 Å Background = 0 – 0.01 

Qmin = 0 – 2 Å-1 DebyeSumRmax = 107 Å 

Qmax = 14 – 28 Å-1 Gaussian Noise RMS = 0 – 0.01 

Qdamp = 0.01 – 0.04 Å-1  

ADP = 0 - 2 Å2  
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Figure S27: Loss curve for the training of the GBDT algorithm to predict which POM cluster a PDF match. 

The training loss converges to zero, while the validation loss is slightly higher (overfitting). This means that the 

model learns to predict perfectly on previously seen datasets, while it has small errors on unknown data. 

 

Table 19: The mean and standard deviation based on five iterations where the model has been trained on 

different simulated PDFs and predictions have been done on the same test set.  

 2 3 5 8 98 

xPDF 43.84 ± 0.09 40.32 ± 0.66 53.95 ± 0.00 71.38 ± 0.09 93.95 ± 0.16 

nPDF 46.95 ±0.55 39.37 ± 0.27 54.00 ± 0.36 73.27 ± 0.31 94.27 ± 0.23 

ePDF 45.10 ± 0.33 41.67 ±	0.51 50.93 ±	0.27	 74.27 ± 0.00 95.98 ±	0.17 

xSAXS 29.12 ± 3.32 48.67 ± 0.44 60.95 ± 0.00 70.56 ± 0.11 93.59 ± 0.11 

xPDF + 

xSAXS 

55.12 ± 0.22 55.76 ± 0.00 75.17 ± 0.00 83.88 ± 0.18 97.02 ± 0.17 

xPDF + nPDF 

+ xSAXS 

65.55 ± 0.11 65.1 ± 0.11 77.47 ± 0.09 86.68 ± 0.00 97.52 ± 0.32 
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Appendix V: Published paper 

The following pages contain the article published based on the results in this Thesis. 

 

Cluster Compounds Very Important Paper

Structural Changes during the Growth of Atomically Precise Metal
Oxido Nanoclusters from Combined Pair Distribution Function and
Small-Angle X-ray Scattering Analysis
Andy S. Anker, Troels Lindahl Christiansen, Marcus Weber, Martin Schmiele, Erik Brok,
Emil T. S. Kjær, Pavol Juh!s, Rico Thomas, Michael Mehring,* and Kirsten M. Ø. Jensen*

Abstract: The combination of in situ pair distribution function
(PDF) analysis and small-angle X-ray scattering (SAXS)
enables analysis of the formation mechanism of metal oxido
nanoclusters and cluster–solvent interactions as they take place.
Herein, we demonstrate the method for the formation of
clusters with a [Bi38O45] core. Upon dissolution of crystalline
[Bi6O5(OH)3(NO3)5]·3H2O in DMSO, an intermediate rapidly
forms, which slowly grows to stable [Bi38O45] clusters. To
identify the intermediate, we developed an automated model-
ing method, where smaller [BixOy] structures based on the
[Bi38O45] framework are tested against the data. [Bi22O26] was
identified as the main intermediate species, illustrating how
combined PDF and SAXS analysis is a powerful tool to gain
insight into nucleation on an atomic scale. PDF also provides
information on the interaction between nanoclusters and
solvent, which is shown to depend on the nature of the ligands
on the cluster surface.

Introduction

The design of new functional materials relies on under-
standing the fundamental chemical reactions that govern
material formation and growth. In inorganic and materials
chemistry, we are still challenged in describing these processes
on an atomic level,[1] as studies of nucleation and growth
phenomena are challenging. In recent years, atomically
precise metal oxido nanoclusters of titanium,[2] cerium[3] and
bismuth have been intensively studied due to their wide range
of applications, for example, for photocatalysis,[2] oxygen
storage,[3] in medicine,[4] as radiopaque materials[4b, 5] or as
building blocks for advanced catalysts.[6] Apart from their

technological relevance understanding the solution chemistry
of such metal oxido clusters on an atomic and molecular scale
can open new opportunities for synthesizing nanoscale metal
oxides in a controlled manner.[6, 7]

We have in recent years focused on the chemistry of
bismuth oxido clusters and have synthesized a range of
differently sized molecules and nanoclusters.[4a, 8] These nano-
clusters are generally composed of a bismuth oxido core
[BixOy]z+ of varying nuclearity and charge, and anionic ligands
(e.g. nitrate, carboxylates, aryl sulfonates, silanolates) for
charge compensation. In the following, we will refer to the
structures of the nanoclusters as [BixOy] neglecting charge
and ligand shell. The nanoclusters can be considered built
from [Bi6O8] units which share edges (as defined from the
octahedra formed from Bi atoms, Figure 1A,B) to form larger
clusters. These clusters represent cut-outs of the fluorite-type
structure which constitutes the basis of d- and b-Bi2O3.[6, 9] For
example, the [Bi22O26] cluster[8e] (Figure 1C) is composed of 6
of these basic motifs and the [Bi38O45] cluster[4a] (Figure 1D)
of 13. Similar structures are seen in metal oxido clusters of
other large cations such as [Ce22O24],[10] [Ce38O54],[3a]

[U38O56],[11] and [Pu38O56].[12] The [M6Ox] building block,
where M is a metal, is therefore anticipated to play an
important role in the cluster growth, however, an under-
standing of the mechanisms controlling this process in
solution is still missing. In situ investigations have shed light
on cluster reactions in solution, and the cluster growth from
[Bi6O8] to [Bi38O45] has previously been investigated with
electrospray ionization mass spectrometry (ESI-MS).[13] A
variety of bismuth oxido clusters were observed during the
reaction, but [Bi6O8], [Bi22O27] and [Bi38O45] clusters were
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identified as particularly stable, which agrees well with other
cluster studies.[3a, 9a, 11, 12,14] From these experiments, Sattler
et al.[13] proposed that cluster growth happens through di- or
oligomerization reactions and rearrangement processes, with
cluster growth starting from hexanuclear metal oxido clusters.
Based on the ESI-MS findings, as well as on knowledge on
crystal structures of polynuclear clusters (containing 6–10 Bi
atoms), the reaction is expected to proceed through inter-
mediate species formed by addition of bismuth containing
fragments of dissociated [Bi6O8] units to the cluster core.[15]

However, while mass spectrometry gives information about
the atomic composition of the species present during growth,
the evolution of the atomic structure in solution is yet to be
unraveled.

The molecular structures of many bismuth oxido nano-
clusters are well known, as these can be characterized with
single crystal diffraction. The structures of the clusters shown
in Figure 1 have all been determined from single crystal X-ray
diffraction studies. However, characterizing cluster structures
directly in solution, as is needed for in situ studies, is more
challenging. Extended X-ray absorption fine structure
(EXAFS) has been used to characterize the atomic structure
of some small clusters[14a, 16] and limited structural information
can be obtained from Nuclear Magnetic Resonance (NMR)
spectroscopy.[16b] However, these methods only provide
information on the very local atomic range. Here, we use in
situ X-ray total scattering (TS) and pair distribution function
analysis[17] (PDF) to follow the formation of [Bi38O45] from
[Bi6O8] as a model reaction for nanocluster formation and
growth. As the Fourier transform of the TS signal, the PDF
represents a histogram of all interatomic distances in a sample,
and thus provide atomic structural information from the local
to the global range. PDF is an excellent technique for in situ
studies of materials formation in solution,[18] and has been
applied to study a few large cluster systems previously[12a16b] in
order to characterize their solution structure, but not in situ to
follow cluster reactions. While PDF analysis offers informa-
tion on the atomic structure of matter, it is less sensitive to for
example, cluster or particle size and shape. A way to
complement the structural information available in the PDF
is to combine the technique with small-angle X-ray scattering
(SAXS), which provides information on the size, morphology
and size dispersion of clusters or particles.[19]

We here use PDF and SAXS to study the formation of the
[Bi38O45] cluster starting from [Bi6O5(OH)3(NO3)5]·3H2O[8a]

in dimethyl sulfoxide (DMSO) and obtain detailed informa-
tion on the reaction pathway from octahedral [Bi6O8] units to
[Bi38O45] nanoclusters. To analyze the data, we have devel-
oped an automated modeling approach[20] to identify inter-
mediates and the reaction pathway. This automated approach,
where all relevant smaller cluster structures, based on the
[Bi38O45] framework, is tested against the experimental PDF,
allows us to readily identify the size and structure evolution
during the reaction. Our results clearly identify [Bi22Oy] as
a metastable intermediate structure in the reaction, and we do
not observe [Bi6O8] units as a reaction intermediate on the
time scale of our experiments. We also demonstrate how PDF
can be used to characterize restructuring effects of the solvent
at the surface of nanoclusters and show that the cluster–
solvent interaction affects the [Bi38O45] clusters themselves, as
it introduces disorder in their structure. This effect is highly
dependent on the presence and type of the ligand covering the
clusters. The methods and modeling tools developed here,
using automated and combined SAXS and PDF analysis thus
provides insights into cluster chemistry in solution.

Results and Discussion

Figure 2A shows in situ X-ray total scattering data
obtained during the formation of [Bi38O45] from
[Bi6O5(OH)3(NO3)5]·3H2O dissolved in DMSO. The experi-
ment was done at T= 80 8C, and data sets obtained from
similar experiments performed at lower temperatures (T=
30 8C–60 8C) can be found in Figure S1. At the beginning of
the reaction, Bragg peaks from the crystalline
[Bi6O5(OH)3(NO3)5]·3H2O phase (Figure 2D) is seen, as
crystals at this point are still in suspension in DMSO. After
approximately 7 min, the crystals have fully dissolved, and
only diffuse scattering is seen. We therefore turn to PDF for
further structural analysis, and the corresponding PDFs are
plotted in Figure 2B. The PDFs are the Fourier transforma-
tion of the TS data, where the signal from DMSO has been
subtracted, as illustrated in Figure S2. In the beginning of the
experiment (Figure 2E), the PDF shows the presence of long-
range order from the crystalline starting material, and as
expected, the data can be fitted with the
[Bi6O5(OH)3(NO3)5]·3H2O structure. Towards the end of
the experiments the long-range order disappears,
and the PDFs now show peaks up to only about 12 !.

Figure 1. A) Structure of crystalline [Bi6O5(OH)3(NO3)5]·3H2O.[8a] Hydrogen atoms have been omitted for clarity. B) An octahedral [Bi6O8] unit.
C) The [Bi22O26]

[8e] cluster structure. D) The [Bi38O45]
[4a] cluster structure. In all structures, bismuth is shown in purple, oxygen in red, and nitrogen

in blue.
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In Figure 2F, the PDF obtained at the end of the
experiment is fitted with the [Bi38O45] model, confirming
the product of the reaction. The cluster model (Figure 1D)
was obtained from the structure of crystalline
[Bi38O45(NO3)20(DMSO)28](NO3)4·4DMSO,[4a] where an iso-
lated [Bi38O45] cluster was cut out of the crystal structure. The
modeling (described in detail in Table S1) was set up so that
the basic atomic structure was kept fixed during the refine-
ment. The excellent fit illustrates that the structure of the
[Bi38O45] cluster in solution is similar (if not identical) to that
seen in the crystalline phase, as also confirmed from DLS
measurements (see Figure S3).

The presence of the [Bi38O45] cluster at the end of the
experiment is further supported by SAXS experiments.
In situ SAXS data from a similar experiment are shown
in Figure 2 C. Bragg peaks from the crystalline
[Bi6O5(OH)3(NO3)5]·3H2O phase can again be identified at

the beginning of the reaction (Figure 2C) but disappear after
approximately 10 min. Figure 2G shows the SAXS data
obtained at the end of the experiment fitted with the
[Bi38O45] cluster using the Debye equation as described in
detail in Table S2. Again, the fits show excellent agreement
between data and model.

Having established that we can use PDF and SAXS to
confirm the starting point and end point of the reaction, we
now move to characterize the structures seen during the
cluster growth and identify intermediate species. Figure 3A
shows selected PDFs from the process, clearly illustrating that
a smaller cluster than [Bi38O45] is present at the beginning of
the reaction after dissolution. Initially, we had expected to see
the presence of isolated [Bi6O8] clusters in solution, since it is
described as particularly stable.[9a, 13] The calculated PDF from
a [Bi6O8] cluster is shown in Figure 3A showing only a few
peaks from the small structure. Surprisingly, we cannot

Figure 2. A) Background subtracted in situ X-ray TS data obtained during the experiment performed at T = 80 8C plotted as a function of time.
While Bragg peaks are seen at the beginning of the reaction, only diffuse features are seen after dissolution. B) Corresponding PDFs plotted as
a function of time. C) Background subtracted SAXS data obtained during a similar experiment plotted as a function of time. The intensity is
shown on a logarithmic scale. D) Simulated X-ray scattering data of the [Bi6O5(OH)3(NO3)5]·3H2O crystal structure, compared to background
subtracted data from t = 0 min and t =70 min, T =80 8C. E) Fit of the [Bi6O5(OH)3(NO3)5]·3H2O crystal structure to the PDF obtained from the
first frame in the experiment at t = 0 min. Rwp =29.0%. F) Fit of the [Bi38O45] cluster structure to the PDF obtained at the end of the experiment at
t =70 min; Rwp = 16.6%. G) Fit of the [Bi38O45] cluster structure to the SAXS data obtained at the end of the experiment at t = 37 min; Rwp = 3.1%.
The SAXS data are plotted in a log–log plot.

Figure 3. A, B) Comparison of experimental PDFs (A) and SAXS data (log–log plot) (B) with calculated patterns from an isolated [Bi6O8] unit and
a [Bi10O14] “dimer”. C) Fit of the [Bi38O45] cluster structure to the PDF obtained after the dissolution of the crystalline starting material; T = 80 8C,
t = 8 min. D) Asymmetric peak at 3.8 ! in the PDF. E) A log–log plot of the fit of the [Bi38O45] cluster structure to the SAXS data obtained after the
dissolution of the crystalline precursor; T =80 8C, t = 16 min.
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identify a PDF similar to this at any point in our in situ data
from any reaction temperature, as peaks to higher r values are
seen immediately after dissolution has occurred. This indi-
cates that the small [Bi6O8] clusters are not stable in DMSO
on the time scales and experimental conditions of the in situ
X-ray scattering experiments. This observation is confirmed
by SAXS (Figure 3B), where isolated, monodisperse [Bi6O8]
clusters are not seen at any point in our data. We also do not
observe the presence of for example, [Bi10O14] structures (two
edge-sharing [Bi6O8] units) or any smaller fragments. While
we cannot rule out that such structures are present in very
small concentrations in the samples, they are not main species.

[Bi6O8] was observed as a very dominant species in in situ
ESI-MS experiments.[13] However, the conditions used for the
ESI-MS measurements were different from the current
scattering studies, as the hydrolysis reactions in the ESI-MS
experiments were followed at room temperature, at much
lower Bi concentration (0.05 mM–1 mM for ESI-MS vs.
230 mM for PDF/SAXS), and in a different solvent, namely
a mixture of DMSO and dichloromethane, CH2Cl2. These
highly different conditions may explain the differences in the
species observed. However, ESI-MS is also more sensitive to
minor species than both PDF and SAXS, although they will
only be detected if they can easily be charged. The two
experiments are thus not in contradiction but provide
information for different conditions and different time scales:
While the ESI-MS studies show that [Bi6O8] species form
rapidly after dissolution, their absence from our in situ X-ray
scattering data indicate very low solubility and thus low
concentration of these species and fast condensation after
dissolution in DMSO. Both experiments show the formation
of [Bi22O26] clusters as quite stable intermediate and [Bi38O45]
as final products.

We can now analyze the structure of the intermediate
species. From the similar PDF peak positions between the
intermediate structure (t = 8 min) and the final cluster (t =
70 min) seen in Figure 3A, it is evident that the intermediate
is structurally related to the [Bi38O45] cluster, as many of the
main peaks show up in both PDFs. However, the peaks
representing the largest interatomic distances are not present
in the PDF from the intermediate cluster, which also appears
to be significantly more disordered, as seen from the
asymmetric broadening of the first Bi···Bi peak at r = 3.8 !
in Figure 3D. Figure 3C shows a fit of the [Bi38O45] structure
to the PDF from the intermediate cluster. In Figure 3 E, the
SAXS fit of the [Bi38O45] cluster to data representing the
intermediate confirm that the cluster is smaller than the final
[Bi38O45].

To characterize the cluster size evolution during the
reaction, we first analyze the in situ SAXS data with a form
factor analysis. Details on the modeling and examples of fits
are given in Table S3 and Figure S4. The results (Figures S5
and S6) show that the average cluster size increases during the
reaction, and the clusters present are of a higher size
dispersity at the beginning of the reaction than at the end,
where the presence of stable [Bi38O45] clusters results in a very
low size dispersity.

The observation that the intermediate cluster is smaller
but structurally close to the [Bi38O45] structure agrees well

with the chemistry of bismuth oxido clusters discussed above,
as several different sizes of bismuth oxido clusters, all built up
from [Bi6O8] units can be synthesized. We therefore attempt-
ed to fit other known cluster structures, with sizes between
[Bi6O8] to [Bi38O45], to the intermediate PDF as shown in
Figure S7. The best cluster candidates were the [Bi18O36] and
[Bi22O38] structures, agreeing well with observations from in
situ ESI-MS analysis, molecular dynamics simulations and
quantum chemical calculations.[13, 15a,b] However, to look
further into the time-dependent structural changes, and to
probe a larger structural space, we developed an automated
method, where all smaller cluster structures based on the
[Bi38O45] framework were tested against the experimental
PDF. Automated modeling methods for PDF analysis have
recently been proposed by Banerjee et al.[21] for analysis of
metal nanoparticles. In a recent study, we developed a meth-
od, where structural motifs in molybdenum oxide structures
were identified by fitting automatically generated fragments
of know polyoxometalate structures to PDFs.[20] We here
apply an extension of this latter method to in situ data in order
to identify intermediates and reaction pathways.

The principle is illustrated in Figure 4. First, the [Bi38O45]
model is fit to the PDF obtained from the last frame in the
experimental series. It was thereafter tested whether a smaller
version of the structure, i.e., with some Bi and O atoms
removed would result in a better fit to the data, as described
in more detail in the Supporting Information, section I.

This method can give us an overview of the best fitting
structure (built up from edge-sharing [Bi6O8] units) for every
frame obtained during the reaction. Figure 5A–C shows the
results from the automated modeling described above, where
the refined number of Bi atoms is plotted as a function of time
for the in situ experiments done at T= 80 8C, 60 8C, and 30 8C.
Results from experiments done at other temperatures are
given in Figure S8. Figure 5A–C firstly show that larger
structures appear to be stabilized at higher reaction temper-
atures, and that the clusters grow with time. In Figure 5 A (T=
80 8C) plateaus at approximately 32 Bi atoms and 28 Bi atoms
are identified, labelled as I and II. The same plateau at 28 Bi
atoms is seen for the data obtained at T= 60 8C (Figure 5B),
whereas data from T= 30 8C (Figure 5C) show plateaus at 25
and 20 Bi atoms (III and IV). The occurrence of clusters of
a given size is illustrated in Figure 5D, which shows a histo-
gram of the cluster structures identified in all three datasets.
This shows that a large proportion of the identified clusters
have between 20 and 25 Bi atoms. In Figure 6E–H, we show
the structures I–IV along with fits to selected data. While
these structures fit the data well, they appear unphysical, as
“dangling” Bi atoms are seen. However, when looking closer,
we identify that they share a stable backbone of 22 Bi atoms.
This is particularly clear for cluster III and IV, as seen in
Figure 6A, where the Bi positions of these are compared to
the [Bi22O26] structure, and fits of the [Bi22O26] cluster to the
same frames (Figure 6B,C) are reasonable.

The results from the automated modeling thus indicate
that [Bi22O26] is an important intermediate in the reaction. We
also saw other frequent sizes, such as Bi28 and Bi32. However,
these structures do not appear as closed-shell, physical
structures, and are unlikely to be stable. The SAXS form
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factor analysis described above (Figures S5 and S6) further-
more showed that before the reaction finished, a larger size
dispersion is seen, thus indicating that multiple cluster sizes
can be present during the reaction. We therefore tried fitting

both the PDF and SAXS data with a two-structure model with
the [Bi22O26] and [Bi38O45] clusters. The refined parameters
are given in Tables S4–7 and the fits to both SAXS and PDF
data are shown in Figure S9, where they are compared to the

Figure 4. Sketch of the automated modeling process. The last frame of the in situ dataset is modeled with the [Bi38O45] cluster structure and all
structures in which up to 8 Bi atoms from the outer shell have been removed together with nonbonding oxygen atoms. The best fitting structure
(with three Bi atoms added) is used as a starting point for the fitting of the second-last frame. This process is repeated for all frames in the
reaction.

Figure 5. A–C) The number of bismuth atoms in the best fitting structure for each frame is plotted versus reaction time for the experiments done
at T = 80, 60, and 30 8C. D) Histogram representing the number of Bi atoms in the best fitting structure through the reaction. Frequency is the
number of times the specific cluster size is present during the reaction. E–H) Clusters and fits that have been obtained in the automated
modeling process.
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results from the automated modeling. In section K in the
Supporting Information, we compare simulated SAXS data of
the [Bi22O26] and [Bi38O45] clusters to data at two different
time points in the reaction and compare two-phase SAXS
refinements to fits using individual [Bi22O26] and [Bi38O45]
clusters. Generally, the two-structure models provide similar
fit qualities or better.

Having established that the main species present through-
out the reaction are [Bi22O26] and [Bi38O45], we can sequen-
tially analyze the data to extract phase fractions of the two
clusters as a function of time. The results from this analysis are
shown in Figure 7 (see Figure S12 for results from other
reaction temperatures). Results from SAXS is shown in blue,
and PDF in red, illustrating how the [Bi38O45] fraction
increases with function of time and temperature. Analysis of
SAXS and PDF data independently show similar phase
fractions of the two clusters in the high temperature cases, and
the amount of the [Bi38O45] cluster steadily increases. We
therefore attempted a combined analysis method, that is,
using the so-called complex modeling approach.[19b–d, 22] Com-
plex modeling using SAXS and PDF analysis has been
exemplified for CdS nanoparticles, where Farrow et al.[19b]

showed that by combining the two techniques, a much more
robust description of particle size and shape could be
obtained. Here, we have in a similar way used the program
Diffpy-CMI for complex modeling of PDF and SAXS data.
However, we have applied the Debye equation to calculate
the scattering pattern in both the SAXS regime and PDF
regime, as described in detail in the Supporting Information,
sections L and M. The results of the combined modeling are
shown in green in Figure 7 and generally agree well with the

individual SAXS and PDF analysis, but with more certainty
on the refined parameters as seen from the less scattered data
points.

While the results from the experiments done at higher
temperatures (T= 50 8C–80 8C) generally show clear trends
and a good agreement between the SAXS and PDF results,
larger discrepancies are observed for the data seen from
experiments done at lower temperatures, illustrated for T=
30 8C in Figure 7C. Here, the PDF results are somewhat
scattered, while the SAXS refinements appear to give
a clearer trend. The dispersity analysis illustrated in Figures
S5 and S6 furthermore showed a larger dispersion of sizes for
low temperature experiments, and it may be that small
fractions of other cluster structures or fragments are present
for longer times during these slower reactions.

The data indicate that in none of the experiments, a full
reaction to [Bi38O45] takes place, as some [Bi22O26] is present
at the end of the experiment. The refined fraction of the final
[Bi38O45] cluster is approximately 60 % at the end of the in situ
experiment at T= 80 8C, and for the reactions done at lower
temperatures, the [Bi22O26] cluster remains the majority
species in the solution. However, PDF and SAXS data
collected from samples kept up to 275 days at room temper-
ature show excellent fits with a single phase [Bi38O45] model
(Figures S16 and S18).

Combined, the results from the automated PDF analysis
and the complex modeling of SAXS and PDF data allow us to
establish the overall reaction route. When
[Bi6O5(OH)3(NO3)5]·3H2O is dissolved in DMSO, larger
clusters quickly form, and we never observe free [Bi6O8] (or
smaller structure fragments) in our data at a time resolution

Figure 6. A) Comparison of the Bi positions in the [Bi22O26] cluster with those of structures III and IV, found from the automated modeling
method. B,C) Fit to the in situ PDF (T = 30 8C) obtained at t =152 min (B) and t =103 min (C) using the [Bi22O26] cluster as the model.

Figure 7. Phase fractions of the [Bi22O26] and [Bi38O45] clusters, plotted as a function of time for experiments at A) T =80 8C, B) 60 8C, and C) 30 8C.
Results from PDF are plotted in red, from SAXS in blue, and from complex modeling in green.
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of 4 s. This process most likely takes place through condensa-
tion reactions and rearrangement processes, as also suggested
by Sattler et al.[13] The main intermediate species we observe
is [Bi22O26], as concluded from both SAXS and PDF data.
This cluster is quite stable and co-exists with [Bi38O45] in the
time range investigated with in situ experiments. The local
structure changes taking place during dissolution are dis-
cussed further in the Supporting Information, section O.
The experiments discussed so far were all done from
[Bi6O5(OH)3(NO3)5]·3H2O. Nearly identical results were
obtained when the starting crystalline material was changed
to [Bi6O4(OH)4(NO3)6(H2O)2]·(H2O) (see Figure S18). This
indicates that the results presented are general for compounds
based on a hexanuclear bismuth oxido core [Bi6O8] dissolved
in DMSO.

Using SAXS and PDF, we have identified the main
intermediate species in the process. Nevertheless, some
questions regarding the cluster growth remain unanswered
from the current study. As discussed above, it has previously
been suggested that cluster growth takes place through
oligomerization reactions involving fragments of [Bi6O8] units
as key species. Our data and time resolution do not allow us to
identify these short-lived species or the specific mechanism.
Several processes may take place in the reaction: for example,
elusive, larger intermediates assembled from [Bi6O8] units
may form, which could collapse or partly dissociate to result
in the [Bi22O26] structure. Dissociation of [Bi6O8] fragments
could also take place before oligomerization to lead stepwise
to [Bi22O26] and finally to [Bi38O45]. This hypothesis is
supported by ESI-MS studies of the hydrolysis of bismuth
carboxylates, which revealed intermediates between Bi3- and
Bi13-oxido clusters. Independent analytic techniques to sup-
port their formation in solution are missing, but several single
crystal X-ray structures of other polynuclear bismuth oxido
clusters including at least one [Bi6O8] unit with various ligands
have been reported.[9a, 15c] The time resolution for the scatter-
ing experiments currently possible limits our insight into the
fast processes in solution; for example, molecular dynamic
simulations have suggested that the growth from [Bi6O8] units
take place on the nanosecond to microsecond time scale.[15a]

In the future, new possibilities for ultrafast, high flux X-ray
scattering studies may open for studies of such processes.[23] If
one could chemically stabilize a series of species formed on
the way to the [Bi22O26] clusters, new insight could also be
obtained.

Ligand Exchange: From [Bi38O45(NO3)20(DMSO)d] to
[Bi38O45(OMc)24(DMSO)d]

PDF analysis also allows us to study cluster–solvent
interactions and any structural changes that may take place
during exchange of ligands in the clusters. Figure 8A shows
PDFs obtained when heating a solution of
[Bi38O45(NO3)20(DMSO)28](NO3)4·4DMSO in DMSO with
sodium methacrylate. In this process, nitrate ligands are
substituted with methacrylate[5, 9a] making the clusters soluble
in organic solvents. After 7 min of the reaction, significant
changes appear. Figure 8B shows selected PDFs obtained
over the course of the reaction. At the beginning, both the
peaks at r! 3.8 ! and r! 6.7 ! have shoulders which
disappear through the ligand exchange, and all of the peaks
become narrower and more symmetric as the reaction
progresses.

We start by modeling the first frame of the reaction with
the [Bi38O45] cluster structure, Figure 9A. While this model
fits all main PDF peaks, significant misfits are seen, and the
difference curve is similar to an exponentially dampened
sinusoidal function. This behavior has previously been
described by Zobel et al. , who related it to solvent restructur-
ing effects on the surface of nanoparticles.[24] Figure 9B shows
the fit if a dampened sinusoidal function is added to the
[Bi38O45] model. This significantly improves the fit to the data,
suggesting a strong interaction between the cluster (or its
ligands) and the DMSO solvent. A PDF obtained from pure
DMSO is shown in Figure S19 confirming that the oscillation
does not arise from the solvent itself.

At the end of the reaction, the data (Figure 9 D) is very
well described by the [Bi38O45] cluster, giving a Rwp value of
12.2%. Here, the exponential dampened sinusoidal does not
contribute to the fit as seen in Figure 9 E. Figure 9C (bottom)
shows the Rwp values of the fits during the reaction. This
behavior indicates that the structuring of the solvent domi-
nates at the beginning of the reaction but when the ligand is
exchanged to methacrylate, the effect vanishes. This is also
clear when plotting the contribution of the dampened sinu-
soidal oscillation through the reaction, Figure 9F.

The ligand exchange, and the solvent interactions also
appear to affect the atomic structure of the bismuth oxido
clusters. Figure 9C (top) shows the refined ADPs of the Bi
atoms through the reaction. This parameter relates to the
width of the PDF peaks, and decreases through the reaction,

Figure 8. A) PDFs obtained from in situ X-ray TS data collected during the ligand-exchange experiment performed at T =80 8C, plotted as
a function of time. B) Selected PDFs from the experiment.
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showing that the ligand-exchanged clusters with methacrylate
are more ordered. The PDFs obtained from the beginning of
the reaction furthermore show highly asymmetric peaks, as
seen most clearly from the shoulder peak at about 4.2 !. This
asymmetry is likely to be an effect of the strong interaction
between the cluster and the DMSO solvent. Modeling details
are given in Table S8,9.

The solvent restructuring in the beginning of the reaction
is likely due to partial dissociation of nitrate ligands, which
results in a cationic cluster, making the coordination to
DMSO strong. This can result in some distortion of the
[Bi38O45] core as seen from PDF peaks asymmetry. When the
nitrate ligand is substituted with methacrylate, the strong
bonding between methacrylate and the [Bi38O45] clusters
hamper the coordination of DMSO to the nanoclusters, and
the effect in the PDF vanishes. This is also
reflected when considering the crystal structures of
[Bi38O45(NO3)20(DMSO)28](NO3)4·4DMSO[4a] and
[Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O:[5] For the nitrate-
coordinated cluster, 28 DMSO molecules coordinate to the
bismuth oxido core, while this is only 9 for the crystal
structure containing methacrylate.

A sketch of how the solvent restructures at the surface of
the [Bi38O45] clusters is illustrated in Figure 10. The DMSO
molecules coordinate to the nanocluster through strong
bonding to the surface of the bismuth oxido cluster with
directions perpendicular to the surface of the [Bi38O45]
clusters. This results in regions with alternating low and high
electron density due to packing of solvent molecules.
Collectively, this gives rise to a sinusoidal oscillation contri-
buting to the PDF. Since the solvent effect is strongest close to
the surface of the [Bi38O45] clusters and it slowly transforms
into a bulk solvent structure of DMSO, the sinusoidal

oscillation exponentially decays. However, we observe sol-
vent effects of up to r = 30 !.

Conclusion

In situ PDF and SAXS have been used to follow the
reaction from a suspension of [Bi6O5(OH)3(NO3)5]·3 H2O in
DMSO to [Bi38O45] clusters in solution (Figure 11). The
structural modeling was done using the Debye equation, and
we applied combined modeling of the PDF and SAXS data.
To follow the cluster growth taking place during the reaction,
we introduced an automated modeling method, where
intermediate species were identified by iteratively removing
atoms from the final [Bi38O45] structure. This analysis showed
that starting from [Bi6O8] a [Bi22O26] intermediate very
quickly forms and slowly transforms to [Bi38O45]. The
formation of the [Bi22O26] structure unexpectedly proceeded
immediately after dissolution of the crystalline starting
material, meaning that the time resolution of the X-ray
scattering experiments does not allow us to identify any short-
lived building blocks that may form before the larger clusters
are seen. Questions regarding e.g., oligomerization reactions
and cluster fragmentation thus remain open, but the combi-
nation of SAXS and PDF provided new insight into the
cluster growth process of bismuth oxido species including
information on the time scale at which processes occur.

We furthermore demonstrate that due to nitrate ligand
dissociation, a strong interaction between DMSO and the
bismuth oxido clusters induce restructuring of solvent mole-
cules around the bismuth oxido clusters. This interaction leads
to disorder of the atomic structure in the bismuth oxido
clusters themselves, as seen from the width and asymmetry of
PDF peaks. When methacrylate is introduced as a ligand in

Figure 9. Representative fit of a PDF obtained during ligand exchange, obtained t =0 min into the ligand-exchange reaction A) without including
solvent restructuring effects (wave), B) including solvent restructuring effects (wave). C) Rwp values and ADP values of Bi obtained when modeling
the time-resolved PDFs, obtained during ligand exchange, with the [Bi38O45] model. D) Representative fit of a PDF obtained during ligand
exchange, obtained t = 15 min into the reaction without including solvent restructuring effects and E) when including solvent restructuring effects
at the surface of the nanocluster. F) The contribution of the solvent restructuring effects during the ligand-exchange reaction.
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the [Bi38O45] cluster, it screens the cluster from strong solvent
interactions, consequently leaving the [Bi38O45] core more
ordered and closer to that observed in the crystalline
structure. However, the [Bi38O45] core structure stays intact
during the ligand substitution reaction, which demonstrates
that such atomically precise metal oxido nanoclusters can
serve as model structures to study ligand effects at the surface
of metal oxide nanoparticles.

The chemical knowledge built up in this study is likely
transferable to the growth of other metal oxido clusters, at
least to metal oxides of the fluorite type such as uranium,
cerium and plutonium oxido nanoclusters, which also show
a stable nuclearity of 38 metal atoms in their cluster core. The
insights that can be obtained from combined in situ X-ray
scattering studies furthermore open for understanding mate-
rial formation in solution. For example, SAXS and PDF
studies may allow the identification of prenucleation clusters,
and provide a much deeper understanding of the fundamental

processes involved in nucleation. Studies of atomically
monodisperse metal oxido cluster structures, as done here,
can furthermore provide knowledge of metal oxide chemistry,
and it is likely that the metastable [Bi22O26] cluster observed
here may be an important species in bismuth oxide formation.
Understanding the solution chemistry of metal oxido clusters
on an atomic and molecular scale can thus open new
opportunities for synthesizing nanoscale metal oxides in
a controlled manner.
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Structural Changes during the Growth of
Atomically Precise Metal Oxido
Nanoclusters from Combined Pair
Distribution Function and Small-Angle X-
ray Scattering Analysis

The development of tools for combined,
automated analysis of pair distribution
function (PDF) and small-angle X-ray
scattering (SAXS) data enabled the iden-
tification of intermediate species in the
formation of atomically precise [Bi38O45]
nanoclusters (see picture). By studying
cluster–solvent interactions it was also
found that the solvent can affect the
metal oxido structure.
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