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We are developing generative adversarial
networks (GANs) that can learn to make
simulated INS data that matches experimental
INS dataset under a second. This GAN-based
approach, once trained, will be deployed in a
range of scenarios for analysing and
understanding INS dataset. The GAN can be used
to help classify materials structures from the INS
datasets and to work with other ML and non-ML
(e.g. Spin-W[6]) algorithms which can estimate
magnetic Hamiltonian parameters from INS data.

Work in progress: Applying the framework on data from scattering (1D), spectroscopy (2D) and imaging (3D)
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During the past decades, research in materials science has been accelerated by the rapid development of synchrotron and
neutron sources.[1] Conventional data analysis approaches using minimization techniques, such as least-squares fitting
algorithms, cannot keep up with the increasing size of measured datasets. Consequently, data analysis is becoming a
bottleneck for research in materials science.[2-3] Therefore, it is of great importance to improve the current state-of-the-art for
data analysis for materials science, particularly utilizing recent developments in artificial intelligence and machine learning
(ML).[2-4] One of the unsolved problems in this context is to match the simulated datasets that the ML algorithms are trained on
to the experimental datasets. This has particularly been a problem for the analysis of inelastic neutron scattering (INS), where
it is computationally expensive to ensure that simulated data correctly mimics the experimental signal and background.[5]
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Work in progress: Applying the framework on data from 
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