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Pair Distribution Function (PDF) is widely used as a method for characterization of materials without long-range order, such as
nanomaterials[1] and disordered materials[2] where conventional crystallographic approaches fail.[3] A major challenge in structure
analysis of these materials is to find a good starting model for the atomic structure. Currently, such starting models are often found
by considering e.g., the structure of well-known, related bulk materials, based on chemical knowledge of the system. Such an
approach can introduce human bias and limit the number of models to be tested. Recently, automated methods such as ‘structure
mining’ and ‘cluster mining’ have therefore appeared in the literature to overcome this challenge.[4, 5] Here, we introduce a new
approach using machine learning (ML) to evaluate results from automated modelling. Our Machine Learning based Motif Extractor
(ML-MotEx), can automatically extract structural motifs from PDF data in semi-real experimental time without human bias.

1: Introduction

Step 1:
Catalogue of structural motifs

Step 2:
Fits of structural motifs to dataset

4: PDF data from DanMAX, 
MAX IV

PDF data from DanMAX
(MAX IV) was used to 

extract ⍺-Keggin 
clusters from several 
different crystalline 

structures within 2 min.

Ground truth

Starting model

Step 3:
Machine Learning (XGBoost) to 

predict Rwp values from structural 
motif

Step 4:
Calculate quantified (SHAP) 
values of atom importance 

for the fit quality

ML-MotEx extracts the C60 buckyball from a
crystalline structure[6] based on a simulated
PDF data.

< 1 ℎ𝑜𝑢𝑟

ML-MotEx identifies the
structural motifs in
disordered
molybdenum oxides.

< 1 ℎ𝑜𝑢𝑟

ML-MotEx identifies the
[Bi38O45] cluster from the β-
Bi2O3 crystal.

6: Using ML-MotEx to identify
stacking faults from PXRD and PDF 

data

ML-MotEx can be used on each frame of 
an in situ dataset to follow the structural 

evolution of the reaction. 
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Both PDF and X-ray Powder-Diffraction data can be used with ML-
MotEx to automatically identify stacking fault domains. 
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